首页 | 本学科首页   官方微博 | 高级检索  
     

矿区土壤丛枝菌根真菌对采陷时间序列的响应
引用本文:刘海静,郭洋楠,牛天心,陈金,包玉英. 矿区土壤丛枝菌根真菌对采陷时间序列的响应[J]. 土壤通报, 2021, 52(1): 90-98. DOI: 10.19336/j.cnki.trtb.2020040901
作者姓名:刘海静  郭洋楠  牛天心  陈金  包玉英
作者单位:内蒙古大学生命科学学院牧草与特色作物生物技术教育部重点实验室,内蒙古 呼和浩特 010010
基金项目:国家科技支撑计划项目(2012BAC10B03-5),横向科研项目-神东采煤沉陷区生态系统稳定性研究(CSIE6033593)及内蒙古科技计划项目(20100509)资助
摘    要:煤炭井工开釆造成大面积的地表塌陷,破坏了原有地表植被、土壤结构和地貌,影响土壤微生物群落结构和组成.为了研究井工矿开釆沉陷区丛枝菌根真菌(AMF)多样性与开采时间序列的相关性,本文以补连塔矿区不同开采年份的采煤沉陷区作为样地,以AMF和土壤因子为研究对象,探索随着采煤沉陷时间的延续,AMF物种多样性、种群结构变化规律及...

关 键 词:煤矿采陷区  开采时间  丛枝菌根真菌  土壤理化性质  相关性
收稿时间:2020-04-09

Response of Arbuscular Mycorrhizal Fungi in Soil to Mining Subsidence Time Series
Affiliation:Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China
Abstract:Coal mining caused surface subsidence of large areas, destroyed the original land topography, soil and vegetation, so that affected the composition of soil microbial community. In order to investigate the correlation between AMF diversity in the mining subsidence area and mining time series, we explored the changes of diversity and population structure of AMF and its correlation with soil physicochemical properties with mining subsidence time in the Bulianta mining area. Results showed that 12 AMF species belonged to 5 genera were found in the study area. Glomus was the dominant population, and Acaulospora was the common population. The AMF species was different among years, and the distribution of genera and species was differed among different sites. With the increase of mining subsidence time, AMF diversity did not show regular changes. However, there was a significant negative correlation (P < 0.01) between mining age and soil water, pH value, alkali hydrolyzed nitrogen, and a significant positive correlation (P < 0.01) with available potassium. A positive correlation (P < 0.05) between AMF spore density and soil alkaline phosphatase activities, and a significant negative correlation (P < 0.01) between species richness and soil water content were also observed. AMF diversity was significantly negatively correlated (P < 0.05) with soil water content, and positively correlated (P < 0.05) with available potassium and alkali hydrolyzed nitrogen. The mining time affected soil physicochemical properties, and further affected the AMF diversity. Along with the mining time series and continuous reclamation, soil fertility was improved, and species diversity of AMF was recovered.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《土壤通报》浏览原始摘要信息
点击此处可从《土壤通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号