首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of salicylic and jasmonic acids on tomato physiology and tolerance to Cucumber mosaic virus (CMV)
Authors:Sahar Gholi-Tolouie  Nemat Sokhandan-Bashir  Mahdi Davari  Mohammad Sedghi
Affiliation:1.Department of Plant Protection,University of Tabriz,Tabriz,Iran;2.Department of Plant Protection, Faculty of Agriculture,University of Tabriz,Tabriz,Iran;3.Department of Plant Protection, Faculty of Agriculture and Natural Resources,University of Mohaghegh Ardabili,Ardabili,Iran;4.Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources,University of Mohaghegh Ardabili,Ardabili,Iran
Abstract:Cucumber mosaic virus (CMV) is one of the most important plant viruses responsible for sharp reductions in the production of many cultivated plants. Activities of antioxidant enzymes, photosynthetic capacity, proline and total soluble carbohydrates (TSC) content were measured in the leaves of tomato (Solanum lycopercicum cv. Falat) plants treated with phytohormones (salicylic and jasmonic acids and their combination) and inoculated with CMV at 0, 1, 2, 4, 6, 8, and 15 days after the treatments. Based on the results, catalase (CAT) activity decreased in the healthy and infected plants, but peroxidase (POD) activity increased in the CMV-infected plants signifying that POD is more active in H2O2 scavenging in tomato. Because the hormone treatments inhibited the reduction in the enzyme activity, it may be considered as a controlling method against CMV. Superoxide dismutase (SOD) activity was lower in the control until 6 days post inoculation (dpi), but increased after 8 dpi. The infected plants and the hormone-treated plants showed an increased SOD activity from 0 to 15 dpi. Phenylalanine ammonia lyase (PAL) activity also increased in all the treatments over the time period (0-15 dpi). Net photosynthesis (NP) rate and chlorophyll content decreased under the virus infection and hormone treatment, whereas control plants had the highest NP and chlorophyll content. Proline accumulation occurred in the infected and hormone- treated plants, but TSC content decreased in comparison to the control. Reduction of TSC content was not significant in the hormone and virus- treated plants. Expression of CMV coat protein gene (CMV-CP) was decreased by approximately 34% in SA+JA+CMV treatment in comparison to the CMV-infected plants. In conclusion, CMV had harmful effect on physiological traits of tomato plants, but hormone application induced resistance. This resistance may be accomplished through the combination of both hormone-related signaling pathways which likely established a strong resistance network together.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号