Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk |
| |
Authors: | Anema Skelte G Li Yuming |
| |
Affiliation: | Food Science Section, Fonterra Research Centre, Private Bag 11029, Palmerston North, New Zealand. mailskelte.anema@fonterraresearch.com |
| |
Abstract: | Skim milk was adjusted to pH values between 6.5 and 6.7 and heated (80, 90, and 100 degrees C) for up to 60 min. Changes in casein micelle size, level of whey protein denaturation, and level of whey protein association with the micelles were monitored for each milk sample. Changes in casein micelle size were markedly affected by the pH at heating. At low pH (6.5-6.55), the casein micelle size increased markedly during the early stages of heating, and the size plateaued on prolonged heating. The maximum increase in size was approximately 30-35 nm. In contrast, at high pH (6.7), much smaller changes in size were observed on heating and the maximum increase in size was only approximately 10 nm. An intermediate behavior was observed at pH values between these two extremes. The rate of denaturation of the major whey proteins, alpha-lactalbumin and beta-lactoglobulin, was essentially unaffected by the pH at heating for the small pH changes involved in this study, and the changes in casein micelle size were poorly related to the level of whey protein denaturation. In contrast, the level of denatured whey proteins associating with the micelles was markedly dependent on the pH at heating, with high levels of association at pH 6.5-6.55 and low levels of association at pH 6.7. Changes in casein micelle size were related to the levels of denatured whey proteins that were associated with the casein micelles, although there was a small deviation from linearity at low levels of association (<15%). Further studies on reconstituted and fresh milk samples at smaller pH steps confirmed that the association of whey proteins with the casein micelles was markedly affected by the pH at heating. These results indicate that the changes in casein micelle size induced by the heat treatment of skim milk were a consequence of the whey proteins associating with the casein micelles and that the level of association was markedly influenced by small pH changes of the milk. It was not possible to determine whether the association itself influenced the casein micelle size or whether parallel reactions involving micellar aggregation caused the increase in micelle size as whey protein association progressed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|