首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An improved particle tracking velocimetry(PTV) technique to evaluate the velocity field of saltating particles
Authors:Chanwen JIANG
Institution:1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;2.Key Laboratory for Ecology and Environment of River Wetlands in Shaanxi Province, College of Agricultural and Business, Weinan Normal University, Weinan 714000, China
Abstract:Velocity is a key parameter characterizing the movement of saltating particles. High-speed photography is an efficient method to record the velocity. But, manually determining the relevant information from these photographs is quite laborious. However, particle tracking velocimetry(PTV) can be used to measure the instantaneous velocity in fluids using tracer particles. The tracer particles have three basic features in fluids: similar movement patterns within a small region, a uniform particle distribution, and high particle density. Unfortunately, the saltation of sand particles in air is a stochastic process, and PTV has not yet been able to accurately determine the velocity field in a cloud of blowing sand. The aim of the present study was to develop an improved PTV technique to measure the downwind(horizontal) and vertical velocities of saltating sand. To demonstrate the feasibility of this new technique, we used it to investigate two-dimensional saltation of particles above a loose sand surface in a wind tunnel. We analyzed the properties of the saltating particles, including the probability distribution of particle velocity, variations in the mean velocity as a function of height, and particle turbulence. By automating much of the analysis, the improved PTV method can satisfy the requirement for a large sample size and can measure the velocity field of blowing sand more accurately than previously-used techniques. The results shed new light on the complicated mechanisms involved in sand saltation.
Keywords:high-speed photography  image processing  particle image velocimetry  velocity distribution  saltation  
本文献已被 CNKI 等数据库收录!
点击此处可从《干旱区科学》浏览原始摘要信息
点击此处可从《干旱区科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号