首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰色RBF神经网络组合模型的交通量预测研究
引用本文:王旭,周旭. 基于灰色RBF神经网络组合模型的交通量预测研究[J]. 森林工程, 2012, 28(4): 51-54
作者姓名:王旭  周旭
作者单位:东北林业大学土木工程学院,哈尔滨,150040
摘    要:根据新陈代谢灰色模型和RBF神经网络模型各自的特点,构造一种新陈代谢灰色模型与RBF神经网络模型组合的平面型模型,模型对无检测器公路的交通量具有较好的预测能力,并用实地调查的数据进行仿真和比较,验证此模型具有较高的精度,从而证明这一模型的可行性和有效性。

关 键 词:灰色理论  RBF神经网络  新陈代谢  组合模型  交通量  预测

Research of Traffic Volume Forecasting Based on Grey RBF Neural Network Combination Model
Wang Xu,Zhou Xu. Research of Traffic Volume Forecasting Based on Grey RBF Neural Network Combination Model[J]. Forest Engineering, 2012, 28(4): 51-54
Authors:Wang Xu  Zhou Xu
Affiliation:(College of Civil Engineering, Northeast Forestry University, Harbin 150040)
Abstract:A plane model that combines Metabolic Grey Model and RBF Neural Network was established in the paper according to the features of Metabolic Grey Model and RBF Neural Network. The model has better forecasting ability for the traffic volume on the highways without detectors. The actual survey data was entered into the model to conduct a simulation. The comparison result showed that the model has a higher precision and was proved to be feasible and effective in the forecasting of highway traffic volume.
Keywords:Grey Theory  RBF neural network  metabolism  combination model  traffic volume  forecasting
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号