首页 | 本学科首页   官方微博 | 高级检索  
     


Physiological regulation of poplar species to experimental warming differs between species with contrasting elevation ranges
Authors:Jian Ren  Weiran Dai  Chunmeng Yang  Xiangli Ma  Chris B. Zou
Affiliation:1.Department of Grassland Sciences,Yunnan Agricultural University,Kunming,China;2.Tianjin Key Laboratory of Water Resources and Environment,Tianjin Normal University,Tianjin,China;3.Department of Natural Resource Ecology and Management,Oklahoma State University,Stillwater,USA
Abstract:Climate warming has resulted in rapid range shifts of plant species, but it is not well known how species with different natural distribution ranges adapt to increase in temperature through physiological adjustment. We experimentally imposed a 1.8 °C increase of air temperature to the cuttings of two common poplar species Populus yunnanensis and Populus szechuanica naturally growing in southwest China using open-top chambers. Populus yunnanensis is distributed along a narrower elevation range compared with P. szechuanica. We determined some key physiological parameters and plant growth regulator activities during the growing season without soil water limitation. Our results showed that a 1.8 °C increase in air temperature increased shoot growth of P. szechuanica through an extension of its growth period but did not affect the growth of P. yunnanensis. Malondialdehyde content, guaiacol peroxidase activities and abscisic acid content increased while indoleacetic acid content decreased in P. yunnanensis. Our results suggest that the two common poplar species in southwest China should be able to adapt to the moderate increase in temperature projected for future climate. The growth of P. szechuanica may benefit through phenological adjustment but a further increase in temperature may inhibit the growth of P. yunnanensis. For poplar plantation management, selecting species with a wide natural distribution range could provide an adaptive alternative for buffering anthropogenic induced increase in temperature and help in sustaining productivity for the long term.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号