首页 | 本学科首页   官方微博 | 高级检索  
     


Contribution of humic substances as a sink and source of carbon in tropical floodplain lagoons
Authors:Irineu Bianchini  Suffix"  >Jr,Marcela Bianchessi da Cunha-Santino
Affiliation:1.Departamento de Hidrobiologia,Universidade Federal de S?o Carlos,S?o Carlos,Brazil;2.Programa de Pós-Gradua??o em Ecologia e Recursos Naturais,Universidade Federal de S?o Carlos,S?o Carlos,Brazil
Abstract:

Purpose

We evaluated the decay of humic (HA) and fulvic acids (FA) in order to discuss the contribution of these substances as a sink and source of carbon in a tropical lagoon.

Materials and methods

Experiments were conducted under aerobic and anaerobic conditions using FA and HA isolated from decomposition of Oxycaryum cubense submitted to 10 and 60 days of degradation. HA and FA were added to water samples from a tropical floodplain oxbow system, the Infernão Lagoon. The mineralization chambers were incubated in the dark at 21.0 °C. The carbon balance, electrical conductivity, pH, and optical density were measured over 95 days.

Results and discussion

The results from the carbon budget were fitted with a first-order kinetics model. The mineralization of refractory fractions predominated for both FA and HA. Overall, although the mineralization pathway yields varied according to the type of resource and oxygen availability, the mineralization half-lives were quite similar (49 to 64 days), suggesting a similar microbial catabolism efficiency during the decay of humic substances. The short-term routes are represented by biochemical oxidations, and the immobilization and labile fractions (varying from 0 to 30%) of FA and HA supported these processes. A yield varying from 61.0 to 91.3% represents a carbon source degradation in the middle term (ca. 2 months) considering the ecosystem.

Conclusions

In tropical floodplain lagoons, there are three carbon routes: (i) the IN1, representing a short-term pathway (hours to days) in the carbon transformation and (ii) IN3, a middle-term carbon source from HA and FA mineralization to the water column and subsequently to the atmosphere. A third route (IN2) supported the heterotrophic metabolism of the lagoon acting as a transitory sink of carbon.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号