首页 | 本学科首页   官方微博 | 高级检索  
     

基于反馈动态神经网络的油田异常井诊断模型研究
引用本文:李铁宁. 基于反馈动态神经网络的油田异常井诊断模型研究[J]. 湖南农业大学学报(自然科学版), 2015, 0(2): 114-116
作者姓名:李铁宁
作者单位:(东北石油大学 计算机与信息技术学院,黑龙江 大庆163318)
摘    要:针对油田异常井诊断的问题,提出基于反馈动态神经网络的模型,该模型具有适应性强、学习效率高等特点。结合粒子群算法弥补其训练速度慢和容易陷入局部最小的缺点,给出模型及算法的优化原则和实现技术。最后根据实际问题,进行油田异常井诊断模型的具体应用,实验结果证明模型对于异常井诊断具有较高准确性及可行性。

关 键 词:反馈动态神经网络  粒子群算法  异常井

Study on Diagnosis Modle of Oilfield Abnormal Well Based on Feedback Dynamic Neural Network
LI Tie-ning. Study on Diagnosis Modle of Oilfield Abnormal Well Based on Feedback Dynamic Neural Network[J]. Journal of Hunan Agricultural University, 2015, 0(2): 114-116
Authors:LI Tie-ning
Abstract:According to oilfield abnormal well, this paper proposed a dynamic feedback neural network model, which has the characteristics of strong adaptability and higher learning efficiency. Combined with the particle swarm algorithm to compensate for its slow training speed and falling easily into local minimum points, it gave the principle of optimization model and algorithm and implementation technology. Finally, according to the actual problem, this papers carried on the concrete application of diagnosis model for oilfield abnormal well, and the experimental results show that the model for abnormal well has higher diagnostic accuracy and feasibility.
Keywords:feedback dynamic neural network  particle swarm algorithm  abnormal well
点击此处可从《湖南农业大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南农业大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号