Mechanisms of persistence of low numbers of bacteria preyed upon by protozoa |
| |
Authors: | M. Habte M. Alexander |
| |
Affiliation: | Laboratory of Soil Microbiology, Department of Agronomy, Cornell University, Ithaca, NY 14853, U.S.A. |
| |
Abstract: | Tetrahymena pyriformis cultures were maintained when transferred serially in solutions containing 105 to 107Klebsiella pneumoniae cells.ml?1, bacterial numbers that were observed to persist in the presence of protozoa. The number of cells of one strain of K. pneumoniae surviving predation in solution was essentially the same in the absence of an alternative prey as in the presence of a second K. pneumoniae strain. Toxins deleterious to protozoa did not appear as the animal consumed the bacteria. T. pyriformis reduced the abundance of Escherichia coli from about 108 to 106.ml?1. but the latter number persisted for 15 days; however, in solutions containing chloramphenicol, the abundance of E. coli fell to 590 cells. ml?1 in 15 days. In solutions containing the antibiotic, T. pyriformis reduced the Rhizobium sp. population from more than 106 to less than 103 cells in 10 days and K. pneumoniae from more than 108.ml?1 to zero in 18 days. An appreciable decline in abundance of these bacteria did not occur in the antibiotic-amended liquid free of protozoa. T. pyriformis did not greatly reduce Rhizobium sp. numbers when both were added to irradiated soil, but the predator caused the bacterial population to decline from 4 × 108 to fewer than 105.g?1 in 16 days in chloramphenicol-treated soil. Colpoda sp. inoculated with Rhizobium sp. into soil sterilized by autoclaving only reduced the prey abundance from 109 to 108.g?1, but the protozoan caused the bacterial population to fall to about 100.g?1 in 15 days in the presence of the antibiotic. The population of Rhizobium sp. added to nonsterile soil dropped from in excess of 108 to 6 × 106.g?1 in 29 days. but it declined to 550. g?1 in the same period when chloramphenicol was also introduced. It is concluded that the ability of these bacteria to maintain themselves in solution and in soil is governed by their capacity to reproduce and replace the cells consumed by predation. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|