首页 | 本学科首页   官方微博 | 高级检索  
     


Structural factors and physical properties of needle-punched nonwovens based on Co-PET/PA bicomponent fibers via alkali treatment
Authors:Yue Li  Chang Whan Joo
Affiliation:1.Department of Organic Materials and Textile System Engineering,Chungnam National University,Daejeon,Korea
Abstract:Needle-punched nonwovens are widely used in industrial fields. However, they are limited to some applications such as high-efficiency filters, high-performance synthetic leathers, and high-absorption wipes because of their low surface area and large pore size. In this study, needle-punched nonwovens composed of Copolyethylene terephthalate (Co-PET)/Polyamide (PA) sea-island bicomponent fibers were treated in NaOH solution with various conditions for preparing nonwovens composed of ultra-fine fibers. The effect of NaOH concentration and treatment temperature on the structural factors and physical properties of nonwovens was investigated. The morphological structures of Co-PET and PA components were analyzed by scanning electron microscope. After alkali treatment, fiber diameter was significantly reduced from 23.65 to 3.95 μm, specific surface area of nonwovens increased more than five times, calculated and experimental mean pore diameter decreased by 83.6 % and 20.8 %, respectively. By increasing NaOH concentration and treatment temperature, pore diameter was reduced, thereby decreasing the air permeability of nonwovens. Meanwhile, tensile strength increased and tearing strength decreased as NaOH concentration and treatment temperature were increased in both machine and cross direction, respectively. The treatment temperature of alkali treatment was significantly influenced by the physical properties of nonwovens.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号