首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Integrating Biochemical,Morpho-physiological,Nutritional, and Productive Responses to Cd Accumulation in Massai Grass Employed in Phytoremediation
Authors:Rabêlo  Flávio Henrique Silveira  de Andrade Moral  Rafael  Lavres  José
Institution:1.College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China
;
Abstract:

Biosurfactants are promising substitutes for chemical surfactants during polycyclic aromatic hydrocarbon (PAH) bioremediation. However, recent studies have revealed contrasting findings and critical knowledge gaps regarding the impacts of biosurfactants on the soil PAH biodegradation efficiency and microbial community. Here, a laboratory study was conducted to evaluate the impact of rhamnolipid on the PAH dissipation efficiency and microbial community structure during the time-course incubation. The data showed that the contribution ratio of biotic loss and abiotic loss depended on the ring number of PAH. In the microcosms supplemented with 20 μg g?1 rhamnolipid, the biodegradation efficiencies of phenanthrene, fluoranthene, and pyrene increased by 10.1%, 12.3%, and 22.0%, respectively, compared to those in the rhamnolipid-free treatment after incubation for 7 days. In contrast, rhamnolipid either had no impact on or inhibited PAH degradation in the later time points (21–35 days). The abundance of bacterial 16S rRNA and phnAc genes showed significant increase in soil amended of both PAH and rhamnolipid. MiSeq sequencing results revealed that potential PAHs-degrading Massilia, Bacillus, Lysobacter, Archrobacter, and Phenylobacterium became dominant genera in PAH treatment, irrespective of the rhamnolipid added. Nevertheless, PAH addition in the presence of rhamnolipid also significantly stimulated the growth of Delftia, Brevundimonas, Tumebacillus, and Geobacillus. In contrast, the rhamnolipid altered the microbial community composition through the selection of Gaiella, Solirubrobacter, Nocardioides, and Bacillus. The results reveal the intensive selectivity effect of PAH and rhamnolipid on the soil microbes that are involved in bioremediation, and highlight the positive effect on PAHs biodegradation.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号