首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling the dispersal of Calanus finmarchicus on the Newfoundland Shelf: implications for the analysis of population dynamics from a high frequency monitoring site
Authors:Pierre Pepin  Guoqi Han  Erica J Head
Institution:1. Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, , St. John's, NL, Canada, A1C 5X1;2. Fisheries and Oceans Canada, Bedford Institute of Oceanography, , Dartmouth, NS, Canada, B2Y 4A2
Abstract:We investigated the drift of passive particles on the Newfoundland Shelf and western Labrador Sea using numerical simulations to assess the possible sources of plankton collected at a high frequency sampling site (S27; 47.55°N, 52.59°W) located near the coast of Newfoundland, Canada. We also summarized data detailing the seasonal stage succession of Calanus finmarchicus at that site, as well as along three oceanographic sections sampled in the spring, summer and autumn across the adjacent continental shelf. Simulations indicated that the Labrador and Newfoundland Shelves represent the major sources of particles transiting through the S27 site, with relatively minor contributions from the western Labrador Sea which are significant during a few months each year. The latter point may be affected by uncertainty in the representation of cross‐shelf transport associated with seasonal or short‐term variations in atmospheric and oceanic forcing, which may also affect the strength and location of bifurcation of the inner branch of the Labrador Current around the Grand Banks. Nevertheless, our results indicated that drift along the inner shelf is likely to be the primary source of copepods collected at S27 throughout most of the year. This in turn suggested that there may be a higher degree of connectivity between conditions in coastal areas of Newfoundland and those in Baffin Bay and west Greenland than with the southern half of the Labrador Sea.
Keywords:   Calanus finmarchicus     dispersal  monitoring  population dynamics  time series  transport
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号