首页 | 本学科首页   官方微博 | 高级检索  
     

基于决策树的土地利用分类方法研究
引用本文:余晶,蒋平安,高敏华. 基于决策树的土地利用分类方法研究[J]. 新疆农业科学, 2009, 46(2): 430
作者姓名:余晶  蒋平安  高敏华
作者单位:新疆农业大学草业与环境科学学院,乌鲁木齐,830052;新疆大学资源与环境科学学院,乌鲁木齐,830046
基金项目:新疆农村特色产业信息化技术研究项目 
摘    要:以新疆乌鲁木齐市部分区域为研究区,利用主成分分析法对Spot-5影像进行数据压缩,运用灰度共生矩阵对第一主成份进行纹理信息提取,分析Landsat-7影像的光谱特征值及NDVI和NDBI特征值,确定各类地物的综合阈值,最后运用决策树分类法对Landsat-7影像进行分类.将分类结果与最大然法分类结果相比较,结果表明,决策数分类较最大似然法分类的精度提高了5.66; ,Kappa 系数提高了7.89; .说明决策树分类能够灵活、有效运用纹理等辅助信息,更好地区分光谱特征相似的目标地物,具有更高的准确性.

关 键 词:遥感影像  纹理分析  特征提取  决策树模型
收稿时间:2009-02-25

Study of Land Use Classification Based on Decision Tree Method
YU Jing,JIANG Ping-an,GAO Min-hua. Study of Land Use Classification Based on Decision Tree Method[J]. Xinjiang Agricultural Sciences, 2009, 46(2): 430
Authors:YU Jing  JIANG Ping-an  GAO Min-hua
Abstract:In this paper,the partial regions of Urumqi in Xinjiang were taken as research area,principal components were extracted from Spot-5 image,texture information was acquired by means of using Gray Level Co-occurrence Matrices from the first principal component,then threshold was selected from the characteristic values of the Landsat-7 image Spectrum,NDVI and NDBI.At last,the decision tree classification was used to classify the landsat-7 image.The Landsat-7 image was classified with the decision tree classification method.Then the classification results and maximum likelihood classification were compared with each other.The results indicated that the accuracy of decision tree classification was 5.66% higher than that of the maximum liklihood classification.Kappa coefficient was increased by 7.89%.
Keywords:remote sensing image  texture analysis  feature selection  decision tree model
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《新疆农业科学》浏览原始摘要信息
点击此处可从《新疆农业科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号