首页 | 本学科首页   官方微博 | 高级检索  
     

基于分数阶微分光谱指数的小麦条锈病遥感监测模型构建
作者姓名:竞霞  张腾  邹琴  闫菊梅  董莹莹
作者单位:西安科技大学测绘科学与技术学院,西安 710054;中国科学院空天信息创新研究院,北京 100094
基金项目:国家自然科学基金项目(42171394,41601467,52079103)
摘    要:为提高小麦条锈病的遥感监测精度,该研究利用分数阶微分能够突出光谱的细微信息以及描述光谱数据间微小差异的优势,在对条锈病胁迫下小麦冠层光谱数据进行分数阶微分处理的基础上,构建了两波段和三波段分数阶微分光谱指数,并将其应用于小麦条锈病的遥感探测。研究结果表明,1.2阶次微分光谱与小麦条锈病冠层病情严重度的相关性最高,较原始反射率光谱、一阶微分光谱和二阶微分光谱分别提高了20.9%、3.9%和20.5%;基于分数阶微分光谱指数的最优分数阶次及其对应波长构建的三波段分数阶微分光谱指数对小麦条锈病的探测能力优于两波段分数阶微分光谱指数,其中分数阶微分光化学指数与冠层病情严重度的相关系数达到0.875;以分数阶微分光谱指数为自变量构建的高斯过程回归(Gaussian Process Regression,GPR)模型对小麦条锈病冠层病情严重度的预测精度优于反射率光谱指数,其训练数据集及验证数据集病情指数(Disease Index,DI)预测值和实测值间的决定系数较反射率光谱指数分别提高了3.8%和19.1%,该研究结果对进一步实现作物健康状况大面积高精度遥感监测具有重要意义。

关 键 词:遥感  模型:分数阶微分  光谱指数  高斯过程回归  小麦条锈病
收稿时间:2020-11-05
修稿时间:2021-02-03
本文献已被 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号