Abstract: | A major concern with the safe re‐use of biosolids on land is the potential for release of metals from organic matter in the biosolids, due to decomposition proceeding as biosolids age. To quantify the effects of biosolid aging on Cd and Zn bioavailability, two sewage sludges (Lagoon sludge and Filtered sludge) and a garden compost were incubated at 25°C and 35°C for 100 days. Changes in availability of Cd and Zn were determined using isotope dilution principles, with the materials being labelled with carrier‐free 109Cd and 65Zn. We determined isotopically exchangeable metal pools (E values) and plant available metal pools (L values) by measuring specific activities of Cd and Zn in soil extracts and in wheat plants, respectively. Changes in carbon content over time were determined using 13C‐NMR spectroscopy and chemical extraction methods, and related to changes in availability of metal pools as determined by isotopic procedures. Hot‐water‐extractable carbon content, assumed to represent easily decomposable organic matter, decreased during the 100 days by 80–190 mg kg?1. The Compost and Lagoon sludge showed no change in L values for Cd or Zn with time, but in the Filtered sludge the L values for Cd and Zn increased significantly, by 43% and 56%, respectively. The isotopically exchangeable pools of Cd and Zn did not change with incubation treatment of the biosolids. These data indicate that the potential for metal release from biosolids as organic matter decomposes depends to a large extent on the biosolid composition. |