首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genotypic differences in shoot silicon concentration and the impact on grain arsenic concentration in rice
Authors:Partha Talukdar  Sue E Hartley  Anthony J Travis  Adam H Price  Gareth J Norton
Abstract:Silicon in rice (Oryza sativa L.) has been demonstrated to be involved in resistance to lodging, drought, and salinity, and also enhances resistance to pests and diseases. The aim of this study was to determine the range of silicon concentration in a set of rice (Oryza sativa L.) accessions, and to determine if the natural variation of shoot silicon is linked to the previously identified silicon transporters (Lsi genes). Silicon concentration was determined in 50 field‐grown accessions, representing all sub‐populations of rice, with all accessions being genotyped with 700K SNPs. SNPs within 10 kb of the Lsi genes were examined to determine if any were significantly linked with the phenotypic variation. An XRF method of silicon determination compared favourably with digestion and colorimetric analysis. There were significant genotypic differences in shoot silicon ranging from 16.5 to 42.4 mg g?1 of plant dry weight, but there was no significant difference between the rice sub‐populations. Plants with different alleles for SNPs representing Lsi2 and Lsi3 were significantly different for shoot silicon concentration. Shoot silicon correlated negatively with grain arsenic in the tropical and temperate japonica sub‐population, suggesting that accessions with high shoot silicon have reduced grain arsenic. This study indicates that alleles for Lsi genes are excellent candidate genes for further study to explain the natural variation of shoot silicon in rice.
Keywords:arsenic  natural variation  Oryza sativa     silicon  XRF
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号