首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nutrient-flow wick culture system for potted plant production: System characteristics and plant growth
Authors:JE Son  MM Oh  YJ Lu  KS Kim  GA Giacomelli
Institution:1. Department of Plant Science, Seoul National University, Seoul 151-921, Republic of Korea;2. Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA
Abstract:To compliment the current subirrigation systems used for production of potted plants, a nutrient-flow wick culture (NFW) system was developed and compared with other subirrigation systems, such as an ebb and flow culture (EBB) system and a nutrient-stagnant wick culture (NSW) system in relation to their system characteristics and plant growth. Kalanchoe (Kalanchoe blossfeldiana cv. New Alter) was cultivated in a 6 cm pot for 10 weeks in each subirrigation system. The water-absorption pattern of the medium, water content of the medium, water loss, algal growth, salt-buildup and plant growth under various culture systems were observed. The water contents of medium under the NFW and EBB systems showed fluctuations from 30 to 40% and from 50 to 60% (by volume), respectively, whereas the water content under the NSW system gradually increased to over 40% without fluctuation. Relative to other systems, the water loss in the NFW system was 50–70% due to the reduction in the evaporation from the surfaces of the trough and medium. Algae appeared in the NSW system because the nutrient solution was always stagnant in the trough, while it was not observed under the NFW system. The dissolved oxygen in the nutrient solution was the highest during the irrigation period and the salinity in the medium was the lowest in the NFW system. With regard to system characteristics, the NFW system was simple, water-saving and efficient. In addition, the growth of kalanchoes in the NFW system was similar to those in the NSW and EBB systems at an irrigation frequency of five times a day.
Keywords:Subirrigation  Nutrient-stagnant wick culture  Ebb and flow system  Algae  Water loss  DO  Water content  Kalanchoe
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号