首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interactions between N,P and C mobilisations during spring growth of a semi-evergreen shrub (Ligustrum ovalifolium L.) grown in containers with different fertilisation schedules
Authors:Lydie Huché-Thélier  Vincent GuérinSylvain Charpentier
Institution:UMR A_462 SAGAH (Sciences Agronomiques Appliquées à l’Horticulture), INRA/INH/Univ. Angers, BP 60057, F-49071 Beaucouzé Cedex, France
Abstract:Container-grown Ligustrum ovalifolium L. plants were used to determine the influence of nutrient availability on the mobilisation of carbon (C), nitrogen (N) and phosphorus (P) during spring growth. During the spring of the second growing season, plants either received no fertiliser, or were fertilised early (starting 17 days after bud break) or late (starting 3 months after bud break). Nutrient composition of different plant tissues was determined at several times during the second growing season from bud break to the end of elongation. Time of fertilisation did not influence aerial dry weight until flowering was completed. Plants that received no fertiliser or were fertilised late had greater root dry weight than plants that received fertiliser early. Fertilised plants had a second flush of growth after flowering completed. Nitrogen and phosphorus mobilisation occurred from bud break to the end of elongation (3 months). Nutrient mobilisation was effective in each perennial organ: root, trunk, ligneous stems and old leaves. However, the role of old leaves as storage organ was minor compared to evergreen tree leaves. Carbon mobilisation only occurred on the 1st month following bud break, before elongation. C-starch accumulation was observed in unfertilised plants even when the C-starch quantities in early fertilised plants were very low at the end of elongation, mainly in roots. In spite of fertilisation supplies, N and P quantities did not increase after elongation in the early fertilised plants, probably in relation to C insufficiency in roots to sustain N and P absorption and assimilation. By contrast, in late fertilised plants, high C quantities in roots were mobilised for N and P uptake and assimilation, which allowed both second growth flush and storage of N and P in perennial organs. The mobilisation of nutrients before and during elongation revealed the nutritional autonomy of shrubs, which could allow fertiliser use efficiency to be increased and environmental impacts to be minimised by delaying spring fertilisation. Nevertheless, the shrub ability to valorise fertilisation supplies for sustaining growth or nutrient storage restoration required sufficient C-starch quantities in roots. The starch accumulated in roots before late nutrient supply can be used for these objectives.
Keywords:Ligneous  Nutritional autonomy  Nutrient reserves  Soilless culture  Starch  Sugars
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号