四次C—Bezier曲线的降阶逼近研究 |
| |
引用本文: | 沈仙华,;赵玉林. 四次C—Bezier曲线的降阶逼近研究[J]. 吉林林学院学报, 2009, 0(1): 10-17 |
| |
作者姓名: | 沈仙华, 赵玉林 |
| |
作者单位: | [1]南京航空航天大学金城学院,中国南京210016; [2]中国电子科技集团第二十八研究所,中国南京210016 |
| |
基金项目: | 国家自然科学基金项目(70471084). |
| |
摘 要: | 给出了C-Bezier曲线的退化条件,应用控制顶点的扰动和优化方法求扰动的约束最优解,根据不同的端点条件,获得相应的降阶逼近方法.同时,分析给出算法的误差界,针对C-Bezier曲线的特点,用极限手段考察与Bezier降阶的相互关系,并用算例进行了分析比较.
|
关 键 词: | C-Bézier曲线 升阶 降阶 逼近 扰动约束 |
Degree Reduction of 4-degree C-Bezier Curves |
| |
Affiliation: | SHEN Xian-hua, ZHAO Yu-lin ( 1. College of Jincheng, Nanfing University of Aeronautics and Astronautics, Nanjing 210016, China ; 2. No. 28 Research Institute of China Electronic Technology and Science Group, Nanfing 210016, China ) |
| |
Abstract: | Degenerating condition C-Bezier curves are put forward. Applying perturbation of controlled top and the constraint optimization, an error of the degree reduction is also estimated. Further the scheme is combined with a subdivision algorithm to generate lower degree curves with lower error. The relationships between degree reduction of C-Bezier curves and degree reduction of Bezier curves are derived. |
| |
Keywords: | C-Bezier curve Degree elevation Degree reduction Approximation Perturbation constraints |
本文献已被 维普 等数据库收录! |
|