首页 | 本学科首页   官方微博 | 高级检索  
     

四次C—Bezier曲线的降阶逼近研究
引用本文:沈仙华,;赵玉林. 四次C—Bezier曲线的降阶逼近研究[J]. 吉林林学院学报, 2009, 0(1): 10-17
作者姓名:沈仙华,  赵玉林
作者单位:[1]南京航空航天大学金城学院,中国南京210016; [2]中国电子科技集团第二十八研究所,中国南京210016
基金项目:国家自然科学基金项目(70471084).
摘    要:给出了C-Bezier曲线的退化条件,应用控制顶点的扰动和优化方法求扰动的约束最优解,根据不同的端点条件,获得相应的降阶逼近方法.同时,分析给出算法的误差界,针对C-Bezier曲线的特点,用极限手段考察与Bezier降阶的相互关系,并用算例进行了分析比较.

关 键 词:C-Bézier曲线  升阶  降阶  逼近  扰动约束

Degree Reduction of 4-degree C-Bezier Curves
Affiliation:SHEN Xian-hua, ZHAO Yu-lin ( 1. College of Jincheng, Nanfing University of Aeronautics and Astronautics, Nanjing 210016, China ; 2. No. 28 Research Institute of China Electronic Technology and Science Group, Nanfing 210016, China )
Abstract:Degenerating condition C-Bezier curves are put forward. Applying perturbation of controlled top and the constraint optimization, an error of the degree reduction is also estimated. Further the scheme is combined with a subdivision algorithm to generate lower degree curves with lower error. The relationships between degree reduction of C-Bezier curves and degree reduction of Bezier curves are derived.
Keywords:C-Bezier curve  Degree elevation  Degree reduction  Approximation  Perturbation constraints
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号