首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰色关联分析与RBF神经网络的土壤浸提液电导率预测
引用本文:马亮,马英杰,赵经华. 基于灰色关联分析与RBF神经网络的土壤浸提液电导率预测[J]. 节水灌溉, 2009, 0(7)
作者姓名:马亮  马英杰  赵经华
作者单位:新疆农业大学水利与土木工程学院,新疆乌鲁木齐,830052
基金项目:国家高技术研究发展计划(“863”计划)(2006AA100218);;新疆水利水电工程重点学科基金资助项目(XJZDXK2002-10-05)
摘    要:采用灰色系统理论中的关联分析方法,对影响土壤浸提液电导率的主要盐分离子类型进行分析,挑选出影响土壤浸提液电导率的主要因素.与此同时,介绍了径向基函数(RBF)神经网络的原理、训练算法,并建立了基于RBF神经网络与灰色关联分析的土壤浸提液电导率预测模型.结果表明,所建模型具有较强的非线性处理能力和逼近能力,运算速度快、性能稳定,预测精度较高,可以应用于生产实践中.

关 键 词:灰色关联分析  电导率  RBF神经网络

Forecast of Soil Extract Electrical Conductivity Based on Grey Relation Analysis and RBF Neural Network
MA Liang , MA Ying-jie , ZHAO Jing-hua. Forecast of Soil Extract Electrical Conductivity Based on Grey Relation Analysis and RBF Neural Network[J]. Water Saving Irrigation, 2009, 0(7)
Authors:MA Liang    MA Ying-jie    ZHAO Jing-hua
Affiliation:College of water Resources & Civil Engineering;Xinjiang Agriculture University;Urumqi 830052;China
Abstract:Using interaction analytical method in gray system theory,the main salty ion factors,which affect soil extract electrical conductivity,are analyzed and the main factors are selected.In the meanwhile,the principle and train algorithm of radial base function neural network are introduced and the prediction model of soil extract electrical conductivity based on RBF and grey relation analysis is established.The results show that the model has good nonlinear handling ability and approach ability,rapid operationa...
Keywords:grey relation analysis  electrical conductivity  RBF neural network  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号