首页 | 本学科首页   官方微博 | 高级检索  
     

基于反射光谱的江淮分水岭区域典型农作物识别
基金项目:安徽省高校自然科学研究重点项目(KJ2015A261,KJ2015A265);滁州学院科研项目(2014PY07);滁州学院校级科研启动基金项目(2012qd18)
摘    要:对江淮分水岭区域观测的8种农作物冠层光谱进行数据重采样和植被指数计算,分析了4种常用指数和6种常用传感器对农作物的识别能力,同时采用识别效率最高的数据变换形式构建了BP神经网络模型。结果表明:8种农作物的反射光谱曲线存在较大差异;6种传感器对农作物的识别能力由大到小依次为ETM+、QUICKBIRD、IKONOS、MODIS、ASTER、HRG;模拟得到的ETM+和QUICKBIRD的近红外与红光波段反射率计算的归一化植被指数(NDVI)和简单比值植被指数(SR)对农作物的识别能力较强;在不同的数据变换形式中,对农作物识别精度最高的是一阶微分(FD,波长间隔6 nm),识别精度达87.3%;以FD(波长间隔6 nm)为输入数据集构建BP神经网络模型,当隐含层节点数为15时,识别精度最高,达90.0%。

关 键 词:高光谱  农作物  识别  江淮分水岭区域
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《湖南农业大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南农业大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号