首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multi-Temporal Detection of Rice Phenological Stages Using Canopy Spectrum
Authors:WANG Lin  ZHANG  Fu-cun JING  Yuan-shu JIANG  Xiao-dong YANG  Shen-bin HAN  Xiao-mei
Institution:Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science& Technology, Nanjing 210044, China
Abstract:Information on rice phenology is essential for yield estimation and crop management. To test the ability of remote sensing in detecting multiple phenological stages, paddy rice canopy spectrum was measured by a hand-held radiometer. Normalized difference vegetation index (NDVI) was calculated from spectrum, and the slope of NDVI was obtained as its difference. We evaluated the response of NDVI and its slope to rice growth with a comparison of two late-season rice cultivars. The results showed that NDVI and its slope curves had distinct variation corresponding to rice development and they could be used as cultivar-independent phenological indicators. The dates of flooding and transplanting, tillering, panicle development, heading and flowering, maturity, harvest stages, and even field management practices, could be deduced from these indicators. ‘NDVI ≤ 0’ could be used as a single threshold for the detection of flooding and transplanting. The largest spike in the curve of the NDVI slope indicated the duration of tillering stage. The next spike corresponded to panicle development. The heading and flowering stage was characterized by the maximum NDVI and the change of NDVI slope from positive to negative. At the maturity stage, NDVI decreased continuously, and its slope fluctuated just below zero. When rice grains were completely mature and ready for harvest, NDVI decline was accelerated. At harvest, NDVI slope reached its minimum value. The distinction between heading and maturity stages was obscure, most likely due to NDVI saturation at high biomass. The study might provide references for paddy rice phenology determination through remote sensing images.
Keywords:ground remote sensing  normalized difference vegetation index (NDVI)  NDVI slop  ricephenology
本文献已被 CNKI 维普 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号