首页 | 本学科首页   官方微博 | 高级检索  
     


Impacts of thinning on structure,growth and risk of crown fire in a Pinus sylvestris L. plantation in northern Spain
Authors:Felipe Crecente-Campo,Arne Pommerening,Roque Rodrí  guez-Soalleiro
Affiliation:1. Unidade de Xestion Forestal Sostible, University of Santiago de Compostela, E-27002 Lugo, Spain;2. School of the Environmental and Natural Resources, College of Natural Sciences, Bangor University, Bangor, Gwynedd, Wales LL57 2UW, UK
Abstract:We studied the combined effects of thinning on stand structure, growth, and fire risk for a Scots pine thinning trial in northern Spain 4 years following treatment. The thinning treatments were: no thinning, heavy thinning (32–46% of basal area removed) and very heavy thinning (51–57% of basal area removed). Thinning was achieved via a combination of systematic and selective methods by removing every seventh row of trees and then by cutting suppressed and subdominant trees in the remaining rows (i.e., thinning from below). Four years after thinning, mean values and probability density distributions of stand structural indices showed that the heavier the thinning, the stronger the tendency towards random tree spatial positions. Height and diameter differentiation were initially low for these plantations and decreased after the 4-year period in both control and thinned plots. Mark variograms indicated low spatial autocorrelation in tree diameters at short distances. Diameter increment was significantly correlated with the inter-tree competition indices, and also with the mean directional stand structural index. Two mixed models were proposed for estimating diameter increment using a spatial index based on basal area of larger trees (BALMOD) in one model versus spatial competition index by Bella in the other model. As well, a model to estimate canopy bulk density (CBD) was developed, as this variable is important for fire risk assessment. Both heavy and very heavy thinning resulted in a decrease of crown fire risk over no thinning, because of the reduction in CBD. However, thinning had no effect on the height to crown base and thus on the flame length for torching. Overall, although thinning did not increase size differentiation between trees in the short term, the increase in diameter increment following thinning and the reduction of crown fire risks support the use of thinning. Also, thinning is a necessary first step towards converting Scots pine plantations to more natural mixed broadleaved woodlands. In particular, the very heavy thinning treatment could be considered a first step towards conversion of overstocked stands.
Keywords:Forest structure   Thinning   Scots pine   Fire risk   Tree growth modeling   Stand conversion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号