首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Protective effect of paeoniflorin on nerve cells in APP/PS1 mice and its mechanism
Authors:ZENG Jia-hao  YANG Cheng-you  WEN Jun  ZHANG Mao-ying  WANG Xiang-yu
Institution:Jinan University, Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
Abstract:AIM: To investigate the therapeutic and preventive effects of paeoniflorin (PF) on APP/PS1 mice, and to explore the possible mechanism. METHODS: Fifteen male 5-month-old APP/PS1 non-dominant mice were chosen as normal control group, 15 male 5-month-old APP/PS1 double transgenic mice were used as model group, and 15 male 5-month-old APP/PS1 double transgenic mice treated with 5 mg/kg PF by intraperitoneal injection were allocated in administation group. The learning and memory ability of the mice in each group was detected by Morris water maze. The apoptosis was assessed by TUNEL fluorescence staining. The protein expression of PI3K, Akt, p-PI3K, p-Akt, caspase-3, caspase-9, Bcl-2 and Bax in cerebral cortex and hippocampus was detected by Western Blot. The protein expression levels and distribution of caspase-3 and caspase-9 were detected by immunohistochemistry. RESULTS: (1) Compared with normal control group, the learning and memory ability declined in APP/PS1 model group. Compared with APP/PS1 model group, PF obviously improve the ability of learning and memory in mice. (2) Compared with normal control group, the apoptosis of nerve cells in APP/PS1 model group significantly increased and distributed in wider areas, while that in PF group was reduced (P<0.05). (3) Compared with APP/PS1 model group, PF could significantly lower pro-apoptotic factors, caspase-3, caspase-9 and Bax (P<0.05), and increase the expression of anti-apoptotic factors, p-PI3K, p-Akt and Bcl-2 (P<0.05). CONCLUSION: PF can up-regulate the expression of Bcl-2 and down-regulate the expression levels of caspase-9, caspase-3 and Bax via the activation of PI3K/Akt pathway, thereby inhibiting the nerve cell apoptosis and protecting the nerve cells, so as to treat neurodegenerative diseases.
Keywords:Paeoniflorin  APP/PS1 mice  Apoptosis  Nerve cells  PI3K/Akt signaling pathway  
点击此处可从《园艺学报》浏览原始摘要信息
点击此处可从《园艺学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号