首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of rosuvastatin on cerebral microvascular endothelial cell injury induced by oxygen-glucose deprivation/reoxygenation
Authors:WANG Yuan-yuan  BAI Ya  MA Chen-chao  GUO Chao  QIN Na  WEI Dong
Affiliation:Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
Abstract:AIM: To explore the effect of rosuvastatin on the oxygen-glucose deprivation (OGD)/reoxygenation induced injury of cerebral microvascular endothelial cells (BMECs). METHODS: BMECs derived from BALB/c mice were isolated and cultured. BMECs were pretreated with rosuvastatin, followed by OGD for 3 h or 6 h and reoxygenation for 24 h. The morphological changes of BMECs were observed under light microscope. MTT assay was used to measured the cell viability, and carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) staining was used to assess the proliferation of BMECs. The protein levels of cleaved caspase-3 was observed by immunofluorescence staining. The protein levels of Bcl-2, Bax, matrix metalloproteinase (MMP) 2, MMP9, phosphorylated nuclear factor kappa B (p-NF-κB), phosphorylated P38 mitogen-activated protein kinase (p-P38) and phosphorylated c-Jun N-terminal kinase (p-JNK) were determined by Western blot. RESULTS: Rosuvastatin at 10 μmol/L improved the viability of the BMECs with OGD/reoxygenation-induced damage, and maintained the structure of BMECs. Moreover, rosuvastatin significantly prohibited the protein levels of cleaved caspase-3, MMP2, MMP9, p-NF-κB, p-P38 and p-JNK, and up-regulated the ratio of Bcl-2/Bax (P<0.05). CONCLUSION: Rosuvastatin reduces OGD/reoxygenation-induced injury of BMECs by inhibiting the expression of apoptosis-related proteins and MMPs, suggesting that rosuvastatin has potential value for the maintenance of blood-brain barrier.
Keywords:Rosuvastatin  Blood-brain barrier  Oxygen-glucose deprivation  Brain microvascular endothelial cells  Apoptosis  
点击此处可从《园艺学报》浏览原始摘要信息
点击此处可从《园艺学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号