首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial modelling of the fraction of photosynthetically active radiation absorbed by a boreal mixedwood forest using a lidar–hyperspectral approach
Authors:V Thomas  DA Finch  JH McCaughey  T Noland  L Rich  P Treitz  
Institution:aDepartment of Geography, Faculty of Arts and Science, Queen's University, Kingston, Ont., Canada K7L 3N6;bOntario Ministry of Natural Resources, Ontario Forest Research Institute, 1235 Queen St. East, Sault Ste. Marie, Ont., Canada P6A 2E5
Abstract:The spatial variability of the fraction of photosynthetically active radiation absorbed by the canopy (fPAR) was characterized for a heterogeneous boreal mixedwood forest site located in northern Ontario, Canada, based on relationships found between fPAR and light detection and ranging (lidar) data over different canopy architectures. Estimates of fPAR were derived from radiation measurements made above the canopy at a flux tower and below-canopy radiation was measured across a range of species compositions and canopy architectures. Airborne lidar data were used to characterize spatial variability of canopy structure around the flux tower and a map of mean canopy chlorophyll concentration was derived from airborne hyperspectral imagery. Different volumes of lidar points for the locations directly above each photosynthetically active radiation (PAR) sensor were examined to determine if there is an optimal method of relating lidar returns to estimated fPAR values.The strongest correlations between mean lidar height and fPAR occurred when using points that fell within a theoretical cone which originated at the PAR sensor having a solid angle α = 55°. For diffuse conditions, the correlation (r) between mean lidar height versus fPAR × chlorophyll was stronger than between mean lidar height versus fPAR by 8% for mean daily fPAR and from 10 to 20% for diurnal fPAR, depending on solar zenith angle. For direct light conditions, the relationship was improved by 12% for mean daily fPAR and 12–41% for diurnal relationships.Linear regression models of mean daily fPAR × chlorophyll versus mean lidar height were used in conjunction with gridded lidar data and the canopy chlorophyll map to generate maps of mean daily fPAR for direct and diffuse sunlight conditions. Site average fPAR calculated from these maps was 0.79 for direct light conditions and 0.78 for diffuse conditions. When compared to point estimates of mean daily fPAR calculated on the tower, the average fPAR was significantly lower than the point estimate. Subtracting the direct sunlight fPAR map from the diffuse sunlight fPAR map revealed a distinct spatial pattern showing that areas with open canopies and relatively low chlorophyll (e.g., black spruce patches) have a higher fPAR under direct sunlight conditions, while closed canopies with higher chlorophyll (e.g., deciduous species) absorb more PAR under diffuse conditions. These findings have implications for scaling from point measurements at flux towers to larger resolution satellite imagery and addressing local scale heterogeneity in flux tower footprints.
Keywords:fPAR  Canopy structure  Spatial variability  Lidar  Hyperspectral  Chlorophyll
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号