首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLO v6-tiny的蛋鸡啄羽行为识别与个体分类
引用本文:杨断利,王永胜,陈辉,孙二东,曾丹. 基于改进YOLO v6-tiny的蛋鸡啄羽行为识别与个体分类[J]. 农业机械学报, 2023, 54(5): 268-277
作者姓名:杨断利  王永胜  陈辉  孙二东  曾丹
作者单位:河北农业大学信息科学与技术学院,保定071001;河北省农业大数据重点实验室,保定071001;河北农业大学动物科技学院,保定071001;农业农村部肉蛋鸡养殖设施工程重点实验室,保定071001;河北桃木疙瘩农业科技股份有限公司,保定074300;河北省蛋鸡产业技术研究院,邯郸056007
基金项目:国家自然科学基金项目(32172779)、财政部和农业农村部:国家现代农业产业技术体系项目(CARS-40)和河北省科技研发平台建设专项(225676150H)
摘    要:针对目前蛋鸡啄羽异常行为(包括啄和被啄)识别精度比较低的问题,提出了一种基于改进YOLO v6-tiny模型进行啄羽异常行为识别的方法。该方法通过在YOLO v6-tiny模型中引入DenseBlock结构并融入CSP结构的SPP模块(SPPCSPC)的方式,增强了YOLO v6-tiny模型的特征提取能力,扩大了模型的感受野,提升了模型的检测精度。在识别出啄羽异常行为的基础上,对如何基于异常行为发生次数,进行蛋鸡个体分类进行了研究。提出了基于YOLO v6-tiny模型进行蛋鸡个体识别,并将啄羽异常行为识别结果输入个体识别网络,进行蛋鸡个体分类的方法。同时,本文还分别对2种不同的养殖密度、一天当中3个不同的时间段,异常行为发生次数的变化规律进行了分析。实验结果表明,优化后的模型对啄和被啄异常行为的识别平均精度(AP)分别为92.86%和92.93%,分别比YOLO v6-tiny模型高1.61、1.08个百分点,比Faster R-CNN模型高3.28、4.00个百分点,比YOLO v4-tiny模型高6.15、6.63个百分点,比YOLO v5s模型高2.04、4.27个百分点,比YOLO v7-tiny模型高5.39、3.92个百分点。本文方法可以识别出啄和被啄羽异常行为,为蛋鸡异常行为的智能检测提供了技术支撑。

关 键 词:蛋鸡  啄羽  异常行为识别  个体分类  YOLO v6-tiny
收稿时间:2022-12-21

Feather Pecking Abnormal Behavior Identification and Individual Classification Method of Laying Hens Based on Improved YOLO v6-tiny
YANG Duanli,WANG Yongsheng,CHEN Hui,SUN Erdong,ZENG Dan. Feather Pecking Abnormal Behavior Identification and Individual Classification Method of Laying Hens Based on Improved YOLO v6-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 268-277
Authors:YANG Duanli  WANG Yongsheng  CHEN Hui  SUN Erdong  ZENG Dan
Affiliation:Hebei Agricultural University;Hebei Taomu Geda Agricultural Science and Technology Co., Ltd.; Hebei Layer Industry Technology Research Institute
Abstract:To address the current problem of low accuracy in the recognition of feather pecking anomalies (including pecking and pecked) in laying hens, a method for feather pecking anomaly recognition was proposed based on an improved YOLO v6-tiny model. By introducing the DenseBlock structure into the YOLO v6-tiny model and incorporating the SPP module SPPCSPC into the CSP structure, the feature extraction capability of the YOLO v6-tiny model was enhanced, the sensory field of the model was expanded, and the detection accuracy of the model was improved. Based on the identification of feather pecking anomalies, how to classify individual laying hens was investigated based on the number of anomalies. The method to identify individual laying hens based on the YOLO v6-tiny model was proposed and identification results of feather pecking anomalies were input into the individual identification network to classify individual laying hens. At the same time, the change pattern of the number of anomalies at two different breeding densities and three different times of the day was also analyzed. The experimental results showed that the average precision (AP) of the optimized model were 92.86% and 92.93% for pecking and pecked anomalies, respectively, which were 1.61 percentage points and 1.08 percentage points higher than that of the YOLO v6-tiny model, 3.28 percentage points and 4.00 percentage points higher than that of the Faster R-CNN model, 6.15 percentage points and 6.63 percentage points higher than that of the YOLO v4-tiny model, 2.04 percentage points and 4.27 percentage points higher than that of the YOLO v5s model, and 5.39 percentage points and 3.92 percentage points higher than that of the YOLO v7-tiny model. The method can identify the abnormalities of pecking and pecked feathers, which provided technical support for the intelligent detection of abnormal behavior of laying hens. The results of classifying individual laying hens based on pecking abnormalities provided a basis for preferential breeding of individual laying hens.
Keywords:laying hens  feather pecking  abnormal behavior identification  individual classification  YOLO v6-tiny
本文献已被 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号