首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Species screening for short-term planted fallows in the highlands of western Kenya
Authors:AI Niang  BA Amadalo  J de Wolf  SM Gathumbi
Institution:(1) International Centre for Research in Agroforestry (ICRAF), Nairobi, Kenya;(2) Kenya Agricultural Research Institute (KARI), Nairobi, Kenya;(3) Kenya Forestry Research Institute (KEFRI), Nairobi, Kenya
Abstract:Short-term improved fallow technology, which is characterised by deliberate planting of fast growing N2 fixing legumes species in rotation with crops is currently being promoted for soil fertility replenishment in the small holder farms in the tropics. Recent research and extension efforts on this technology have mainly focused on a narrow range of species. There is a need to evaluate more alternative species in order to diversify the options available to farmers and hence reduce the risks of over dependence on fewer species. We evaluated twenty-two shrubby and herbaceous species for their site adaptability, biomass and nutrient accumulation, biomass quality and maize yield response to soil incorporated plant biomass after the fallow (six and twelve months) in three different field experiments on a Kandiudalfic Eutrudox in western Kenya. Species which yielded large amounts ofthe most biomass N adequate for two to three maize crops were Sesbania sesban, Tephrosia vogelii, Tephrosia candida, Crotalaria grahamiana, Dodonea viscosa, Colopogonium mucunoides, Desmondium uncinatum, Glycine wightii and Macroptilium atropurpureum. Most fallow species tested recycled <22 kg P ha–1 in plant biomass. Significant amounts of K were recycled through plant biomass of Sesbania sesban, Tithonia diversifolia, Tephrosia candida, Crotalaria grahamiana, Dodonea viscosa, Colopogonium mucunoides, Desmondium uncinatum, Glycine wightii, Macroptilium atropurpureum and natural weed fallows. Recyclable K in plant biomass ranged between 4 and 188 kg ha–1Two methods of establishing S. sesban and T. vogelii fallows did not result in significant differences in biomass and nutrient yields at the end of the fallow period. Shrubby species gave Hhigh lignin (>10%) and polyphenol (>2%) concentrations. were found only in the shrubby species, and the (Ppolyphenol + lignin ): N ratio varied widely (0.3–5) amongst the species. evaluated. Maize yield increased by two-fold in the first season following the fallow phase compared with continuous maize for most species. Results suggest that there are a wide variety of legumes that could be used for use in improved fallow technologies aimed at ameliorating nutrient degraded soils and subsequently enhancing crop yields.This revised version was published online in November 2005 with corrections to the Cover Date.
Keywords:Biomass production  Biomass quality  Fast-growing legumes  Nutrients cycling  Smaize yield  oil amelioration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号