Interaction between AM fungi and a liquid organic amendment with respect to enhancement of the performance of the leguminous shrub Retama sphaerocarpa |
| |
Authors: | F. Caravaca G. Tortosa L. Carrasco J. Cegarra A. Roldán |
| |
Affiliation: | (1) Department of Soil and Water Conservation, CSIC-Centro de Edafología y Biología Aplicada del Segura, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain |
| |
Abstract: | This study examined the interactions between the inoculation with three arbuscular mycorrhizal fungi, namely, Glomus intraradices, Glomus deserticola and Glomus mosseae, and the addition of a liquid organic amendment at different rates (0, 50, 100 or 300 mg C of liquid amendment per kilogram soil) obtained by alkaline extraction of composted dry olive residue with respect to their effects on growth of Retama sphaerocarpa seedlings and on some microbiological and physical properties of soil. One year after planting, both mycorrhizal inoculation treatments and the addition of amendment had increased plant growth and dehydrogenase, urease and benzoyl argininamide hydrolysing activities. The inoculation with G. mosseae increased plant growth to a greater extent than the addition of the amendment (about 35% greater than plants grown in the amended soil and about 79% greater than control plants) and both treatments produced similar increases in soil aggregate stability (about 31% higher than control soil). The organic amendment produced a very significant decrease in the levels of microbial biomass C and a strong increase in soil dehydrogenase and urease activities, which were proportional to the amendment rate. Only the combined treatment involving the addition of a medium dose of amendment (100 mg C kg−1 soil) and the mycorrhizal inoculation with G. intraradices or G. deserticola produced an additive effect on the plant growth with respect to the treatments applied individually (about 77% greater than plants grown in the amended soil and about 63% greater than inoculated plants). |
| |
Keywords: | Aggregate stability Arbuscular mycorrhizal fungi Dry olive residue Microbial biomass C Semi-arid environments Soil enzyme activities |
本文献已被 SpringerLink 等数据库收录! |
|