摘 要: | 针对西兰花农药残留问题,提出一种基于高光谱图像技术的西兰花农药残留定性检测新方法。首先,采集4组(共180颗)分别喷洒了清水和吡虫啉、阿维菌素、丙森锌3种农药的西兰花的高光谱(383.70~1 032.70 nm)图像,根据其图像信息提取感兴趣区域的平均反射光谱值,并采用分段多元散射校正对原始光谱数据进行预处理。为了提高模型效率,减少高光谱数据冗余,分别使用主成分分析和连续投影算法选择特征光谱。最后,使用马氏距离、最小二乘支持向量机、人工神经网络和极限学习机4种分类算法建立基于全波段和特征波段信息的农药残留检测模型。结果表明:基于连续投影算法的极限学习机模型的识别效果最好,训练集和测试集的正确率分别为98.33%和96.67%。说明利用高光谱图像技术鉴别西兰花表面农药残留种类是可行的,为西兰花表面的农药残留无损检测提供了一种新的方法。
|