首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of soil temperature and water content on fine-root seasonal growth of European beech natural forest in Southern Alps,Italy
Authors:A. Montagnoli  A. Di Iorio  M. Terzaghi  D. Trupiano  G. S. Scippa  D. Chiatante
Affiliation:1. Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
2. Department of Science and Technology for Environment and Territory, University of Molise, Pesche, IS, Italy
Abstract:In tree species, fine-root growth is influenced by the interaction between environmental factors such as soil temperature (ST) and soil moisture. Evidences suggest that if soil moisture and nutrient availability are adequate, rates of root growth increase with increasing soil temperature up to an optimum and then decline at supraoptimal temperatures. These optimal conditions vary between different taxa, the native environment and the fine-root diameter sub-classes considered. We investigated the effects of seasonal changes of both ST and soil water content (SWC) on very fine (d < 0.5 mm) and fine-root (0.5 < d < 2 mm) mass (vFRM, FRM) and length (vFRL, FRL) in Italian Southern Alps beech forests (Fagus sylvatica L.). Root samples were collected by soil core method. Turnover rate was higher for the very fine (0.51) than for the fine (0.36) roots. vFRM, FRM, vFRL and FRL displayed a complex seasonal pattern peaking in summer when SWC was around 40 % and ST was around 14 °C. Above this temperature, under almost constant SWC, all above mentioned root traits decreased. vFRM, FRM, vFRL and FRL showed significant second-order polynomial relationship (p < 0.05) with SWC for both diameter classes, with the only exception of SRL. ST showed the same kind of relationship significant only with vFRM and vFRL, the latter within the 12–16 °C smaller range. Interpolation analysis between root mass and length for both diameter classes and investigated soil environmental characteristics (ST and SWC) showed a clear roundish delineation only for vFRM. In conclusion, these findings clarified the occurrence of a bimodal fine-root growth seasonal pattern for our beech forest. The optimal growth ST and SWC ranges were delineated only for very fine roots, giving further evidence on this root category as the more responsiveness to soil environmental changes. Furthermore, F. sylvatica seems to adopt an intensive strategy to cope with decreasing SWC. Finally, fine-root growth, mainly radial type, seems to be driven by SWC, whereas very fine-root growth, mainly longitudinal type, seems to be driven by ST.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号