首页 | 本学科首页   官方微博 | 高级检索  
     

BP神经网络在日光温室湿度预测中的应用
引用本文:朱春侠,童淑敏,胡景华,毕玉革,武佩. BP神经网络在日光温室湿度预测中的应用[J]. 农机化研究, 2012, 34(7): 207-210
作者姓名:朱春侠  童淑敏  胡景华  毕玉革  武佩
作者单位:内蒙古农业大学机电工程学院,呼和浩特,010018
基金项目:内蒙古数字化农牧业建设示范项目,中国农业大学一内蒙古农业大学科研合作基金
摘    要:在对冬季环境下典型北方日光温室环境因子实测数据进行分析的基础上,选择影响温室湿度的环境因子和管理情况作为神经网络的输入量,包括室外温度、室外湿度、室外光照、室内3点温度、室内光照、天窗、侧窗开闭等共10项,以温室内部5个点实测平均湿度为输出量。通过900组数据对构建好的BP神经网络进行训练,选取训练数据外的60组数据作为测试。结果表明,60组输出数据平均相对误差为3.234%,预测效果良好。

关 键 词:日光温室  BP神经网络  湿度  预测

Application of Nerve Network on Forecasting Temperature in Sunlight Greenhouse
Zhu Chunxia , Tong Shunmin , Hu Jinghua , Bi Yuge , Wu Pei. Application of Nerve Network on Forecasting Temperature in Sunlight Greenhouse[J]. Journal of Agricultural Mechanization Research, 2012, 34(7): 207-210
Authors:Zhu Chunxia    Tong Shunmin    Hu Jinghua    Bi Yuge    Wu Pei
Affiliation:(College of Mechanical and Electrical Engineering,Inner Monglia Agricultural University,Hohhot 010018,China)
Abstract:This thesis analysed the measured datas of common northern sunlight greenhouse’s environrmet factors,then took the 10 factors which are effectful to temperature and human intervention as input,such as the temperature,humidity,illuminance outside,and 3 points temperauter inside,took the average temperature value of 5 points inside the greenhouse as output.The formed BP network was trained through 900 datas,then another 60 datas were trained to test it’s performance.The result has shown that average relative error of the 60 datas was 3.234%,and the forecasting effect was great.
Keywords:sunlight greenhouse  BP nerve network  humidity  forecast
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号