摘 要: | 【目的】尝试在BP神经网络的基础上引入遗传算法进行耕地生态安全评价,以解决BP神经网络在进行土地生态安全评价中收敛速度慢及局部极小值等局限性问题。【方法】依据玉溪市耕地现状,建立由生态压力与生态支持两个子系统组成共计18个指标的评价指标体系,利用综合指数法和基于遗传算法的BP神经网络相结合的方法,对玉溪市2001—2015年的耕地生态安全进行分析评价。同时对BP神经网络及GA-BP神经网络的评价结果进行对比分析。【结果】(1) 2001—2015年,玉溪市耕地生态安全指数由0.772 7下降到0.280 2,由较安全(II)下降到较不安全(IV)。(2) GA-BP神经网络模型较传统BP神经网络模型训练及预测误差小,收敛速度快,评价结果准确程度高。【结论】GA-BP神经网络模型可用于耕地生态安全评价,并且由于其网络性能的改进,具有较强的应用价值。
|