首页 | 本学科首页   官方微博 | 高级检索  
     


A Lysimeter Study to Investigate the Effect of Dairy Effluent and Urea on Cattle Urine n Losses, Plant Uptake and Soil Retention
Authors:R. G. Silva  K. C. Cameron  H. J. Di  E. E. Jorgensen
Affiliation:1. Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, USA
2. Center for Soil and Environmental Quality, Lincoln University, PO Box 84, Canterbury, New Zealand
3. United States Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Ada, OK, 74820, USA
Abstract:Loss of nitrate (NO3 ?) from grazing land is a major cause of surface and groundwater contamination. These losses increase when N sources such as fertilizer are applied to grazing land. The objectives of this work were to (1) study the impact of dairy effluent (DE) or urea on N losses and plant uptake when DE or urea was applied with and without cattle urine and; (2) determine the effect of organic C rich DE on the fate of urine N. The experiment was conducted using lysimeters that contained Templeton sandy loam soil extracted from a pasture in New Zealand. Application of DE resulted in significantly less (p < 0.05) NO3 ? leaching compared with urea in the first year, but not in the second year. Differences between years could be attributed to the comparatively lower C:N ratio of applied DE in the second year, causing relatively greater N mineralization and greater NO3 ? leaching. Differences could also be due to cumulative effects of DE (first year applied) on second year NO3 ? leaching. Total annual pasture N uptake was similar for DE and urea treatments. During the first year, the average NO3 ? concentration was lower when DE was combined with urine compared to urine alone, but not in the second year. The combination of DE with urine resulted in significantly greater (p < 0.01) annual pasture N uptake compared with the urine alone treatment in both years. Urine plus urea resulted in the greatest leaching losses in both years, but its impact on pasture N uptake was mixed. The total leaching loss of N from urine plus DE (90 kg N ha?1) was similar to urine alone (77 kg N ha?1) in the second year. Likewise, the annual percentage of 15N recovered in the leachate from urine plus DE (9%) was not significantly different from urine alone (6%). However, 15N recoveries revealed that the contribution of urine N to NO3 ? leaching was greater when urine was combined with DE (98.8%) compared to urine alone (83%). The greater NO3 ? leaching from urine when combined with DE could be a result of greater nitrification due to the low C:N ratio of DE. Additionally, the annual percentage of urine N uptake by the pasture from urine plus DE (29%) was significantly less than from urine alone (39%) (p < 0.01). The application of organic C rich DE had no significant effect on soil N retention or denitrification when combined with urine.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号