首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multi-Step Competitive Sorption and Desorption of Chlorophenols in Surfactant Modified Montmorillonite
Authors:Ji-Hoon Kim  Won Sik Shin  Dong-Ik Song  Sang June Choi
Institution:1. Department of Environmental Engineering, Kyungpook National University, Taegu, 702-701, Korea
2. Department of Chemical Engineering, Kyungpook National University, Taegu, 702-701, Korea
Abstract:Single- and bi-solute sorption and desorption of 2,4-dichlorophenol (2,4-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) in montmorillonite modified with hexadecyltrimethylammonium (HDTMA) were investigated using multi-step sorption and desorption procedure. Effect of pH on the multi-step sorption and desorption was investigated. As expected by the magnitude of octanol-water partition coefficient, K ow , both sorption and desorption affinity of 2,4,5-TCP was higher than that of 2,4-DCP at pH 4.85 and 9.15. For both chlorophenols, the protonated speciation (at pH 4.85) exhibited a higher affinity in both sorption and desorption than the predominant deprotonated speciation (about 95% and 99% of 2,4-dichlorophenolate and 2,4,5-trichlophenolate anions at pH 9.15, respectively). Desorption of chlorinated phenols was strongly dependent on the current pH regardless of their speciation in the previous sorption stage. Freundlich model was used to analyze the single-solute sorption and desorption data. No appreciable desorption-resistant (or non-desorbing) fraction was observed in organoclays after several multi-step desorptions. This indicates that sorption of phenols in organoclay mainly occurs via partitioning into the core of the pseudo-organic medium, thereby causing desorption nearly reversible. In bisolute competitive systems, sorption (or desorption) affinity of both chlorophenols was reduced compared to that in its single-solute system due to the competition between the solutes. The ideal adsorbed solution theory (IAST) coupled to the single-solute Freundlich model successfully predicted bisolute multi-step competitive sorption and desorption equilibria.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号