首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mapping quantitative trait loci for awnness and yield component traits in isogenic lines derived from an Oryza sativa / O. rufipogon cross
Authors:Feng-Xue Jin  Dong-Min Kim  Hong-Guang Ju  Sang-Nag Ahn
Institution:(1) College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 305-764, South Korea;(2) Present address: Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China;(3) National Institute of Crop Science, Rural Development Administration, Suwon, 441-100, South Korea;(4) Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA;
Abstract:An advanced backcross line, HR9118, was produced from a single plant of BC2F3 families derived from a cross between Oryza rufipogon Griff. (IRGC 105491) as a donor parent and the O. sativa subsp. japonica cv. Hwaseongbyeo as a recurrent parent. Although HR9118 resembled Hwaseongbyeo, several traits were different from those of Hwasoengbyeo, including days to heading, plant height, and awn. These differences between Hwasongbyeo and HR9118 could be attributed to introgressed O. rufipogon chromosome segments into HR9118. Introgression analysis using 460 SSR markers revealed that three O. rufipogon-specific chromosome segments were detected in HR9118 genome. F2:3 populations derived from the cross between Hwaseongbyo and HR9118, consisting of 340 F2 plants and 137 F3 lines, were used to map and characterize QTLs for 12 traits. QTL analysis identified a total of 17 QTLs in the F2:3 populations. Of these, seven QTLs were shared by the F2 and F3 populations, whereas the other ten QTLs were identified only in the F3 population. In seven (41.2%) QTLs identified in this study, the O. rufipogon-derived alleles contributed desirable agronomic effects despite the overall undesirable characteristics of the wild phenotype. Each of three O. rufipogon introgressed segments contained multiple QTLs, indicating linkage and/or pleotropic effects. A cluster of eight QTLs was detected on chromosome 8 including a major QTL for awn. Substitution mapping using F2 population indicated that awn8 was located within an interval between two SSR makers RM23326 and RM23356 which are 590 kb apart. SSR markers tightly linked to QTLs for yield components detected in this study will facilitate cloning of the gene underlying this QTL as well as marker-assisted selection for variation in grain weight in an applied breeding program.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号