首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Methane-oxidizing activities and methanotrophic populations associated with wetland rice plants
Authors:I Watanabe  T Hashimoto  A Shimoyama
Institution:(1) 6-58-18, Jindaiji-Kita, Chofu, Tokyo, 182, Japan e-mail: it6i-wtnb@asahi-net.or.jp, JP
Abstract:Acetylene up to 500 μl l–1 did not affect methane formation in anoxic soil up to 12 h, but further incubation for 1 week showed strong inhibition of methanogenesis. To ascertain the extent of the oxidation of methane produced from rice-planted pots, the effect of acetylene on methane emission was studied. Two rice varieties (Toyohatamochi and Yamahikari) were grown in a greenhouse in submerged soil in pots. At about maximum tillering, heading, and grain-forming stages, methane fluxes were measured. Flux measurement was performed for 3 h from 6 pm, then acetylene at 100 μl l–1 was added to some of the pots. At 6 a.m. the following day, methane fluxes were again measured for 3 h. Only at maximum tillering stage of the variety Toyohatamochi was a significant increase (1.4 times) in methane flux caused by acetylene observed, whereas in the other treatments no significant increase in methane fluxes by acetylene could be defected. To ascertain the activity of methane monooxygenase (MMO), propylene oxide (PPO) formation from propylene was measured with excised roots and a basal portion of stems of the rice plants grown on the submerged soil. A level of 0.1–0.2 μmol PPO h–1 plant–1 was recorded. The roots showed the highest PPO formation per gram dry matter, followed by basal stems. Methane oxidation was roughly proportional to PPO formation. Soluble MMO-positive methanotroph populations were measured by plate counts. The number of colony-forming units per gram dry matter was 106–105 in roots, and 104–103 in basal stems. These results indicate the possibility of methane oxidation in association with wetland rice plants. Received: 26 October 1995
Keywords:Methane  Wetland rice soils  Oryza sativa  Methane oxidation  Acetylene Propylene oxide  Methanotrophs  Rhizosphere
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号