首页 | 本学科首页   官方微博 | 高级检索  
     

大豆脂肪及脂肪酸组分含量的QTL定位
引用本文:郑永战,盖钧镒,卢为国,李卫东,周瑞宝,田少君. 大豆脂肪及脂肪酸组分含量的QTL定位[J]. 作物学报, 2006, 32(12): 1823-1830
作者姓名:郑永战  盖钧镒  卢为国  李卫东  周瑞宝  田少君
作者单位:1.南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室, 江苏南京210095;2.河南省农科院棉花油料作物研究所 河南郑州450002;3.河南工业大学大豆精深加工研究所, 河南郑州450052
基金项目:国家自然科学基金;国家重点基础研究发展计划(973计划);国家高技术研究发展计划(863计划);教育部长江学者奖励计划
摘    要:脂肪及脂肪酸组分的改良是大豆油脂品质育种的主要方面。本研究旨在构建遗传图谱,定位大豆脂肪及脂肪酸组分的QTL,为大豆油脂品质育种提供参考。以Essex×ZDD2315的114个BC1F1单株为作图群体,构建了250个SSR标记和1个形态标记,具有25个连锁群的遗传图谱,覆盖大豆基因组2 963.5 cM,平均每个连锁群上10.0个标记,标记平均间距11.8 cM。用BC1F3家系3个重复的表型平均值代表相对应的BC1F1单株表型值,采用Win QTL Cartographer 2.5复合区间作图法(CIM)检测到18个控制脂肪及脂肪酸组分含量的QTL,位于9个不同的连锁群上,表型贡献率为9.6%~34.5%;多区间作图法(MIM)检测到与CIM区间相同的7个QTL(fat-1, pal-1, st-1, ole-1, lin-1, lin-4和lio-2),区间相近的2个QTL(ole-4和lin-5),位于6个不同的连锁群上,表型贡献率为8.2%~39.3%。CIM法检测到的其他9个QTL有待进一步验证。大豆脂肪及脂肪酸组分含量的主效QTL数量不多,效应大的不多,可能还受许多未能检测出来的微效基因控制,育种中既要注意主效QTL的利用,又要考虑微效多基因的积聚。

关 键 词:大豆  脂肪  脂肪酸组分  QTL定位  
收稿时间:2006-03-17
修稿时间:2006-03-17

QTL Mapping for Fat and Fatty Acid Composition Contents in Soybean
ZHENG Yong-Zhan,GAI Jun-Yi,LU Wei-Guo,LI Wei-Dong,ZHOU Rui-Bao,TIAN Shao-Jun. QTL Mapping for Fat and Fatty Acid Composition Contents in Soybean[J]. Acta Agronomica Sinica, 2006, 32(12): 1823-1830
Authors:ZHENG Yong-Zhan  GAI Jun-Yi  LU Wei-Guo  LI Wei-Dong  ZHOU Rui-Bao  TIAN Shao-Jun
Affiliation:1.Soybean Research Institute of Nanjing Agricultural University/ National Center for Soybean Improvement/ National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, Jiangsu;2.Institute of Cotton and Oil Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002;3.Soybean Processing Research Institute, Henan University of Technology, Zhengzhou 450052, Henan, China
Abstract:Genetic improvement of fat and fatty acid composition content of soybean seed is interesting to both farmers and processors. The objective of the present study was to aim at constructing a genetic linkage map and mapping QTLs conferring fat and fatty acid composition contents in soybean. The mapping population with 114 BC1F1 plants of the soybean backcross (Essex×ZDD2315)×ZDD2315 was established and tested for their genetic variation, and then used to construct a genetic linkage map by using MAPMAKER 3.0. The genetic linkage map contained 250 SSR markers and one morphological marker, spanning 25 linkage groups (LG) at a total distance of 2 963.5 cM. Each LG contained 2 to 20 markers, with average distance being about 11.8 cM. The methods of composite interval mapping (CIM) and multiple interval mapping (MIM) of Win QTL Cartographer Version 2.5 were used for QTL mapping. With CIM, 18 QTLs conferring the contents of fat and fatty acid composition in soybean seed were mapped on nine LGs, i.e. B2, C1, D1b-1, D2, E, H-1, I, L and N-1, explaining 8.2%–39.3% of the total phenotypic variation, while with MIM nine QTLs were detected on six LGs, i.e. B2, C1, D1b-1, D2, H-1 and N-1, explaining 9.6%–34.5% of the total phenotypic variation. Of which seven QTLs, i.e. fat-1, pal-1, st-1, ole-1, lin-1, lin-4 and lio-2, were located on the same regions as that under CIM, while the other two, i.e. ole-4 and lin-5, were close to those under CIM. The other nine QTLs detected with CIM, but not common with MIM, need to be further verified. The number of major QTLs with large effect conferring the contents of fat and fatty acids appeared not as many as expected, while the minor QTLs with small effect accounted for a certain amount of the variation. Therefore, both major and minor QTLs should be considered in the improvement of fat quantity and quality in soybean seeds.
Keywords:Soybean  Fat  Fatty acid composition  QTL mapping
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号