首页 | 本学科首页   官方微博 | 高级检索  
     

多元线性回归与神经网络模型在森林地上生物量遥感估测中的应用
引用本文:徐辉,潘萍,宁金魁,臧颢,欧阳勋志,向云西,吴自荣,国瑞,桂亚可,杨武. 多元线性回归与神经网络模型在森林地上生物量遥感估测中的应用[J]. 东北林业大学学报, 2018, 0(1): 63-67
作者姓名:徐辉  潘萍  宁金魁  臧颢  欧阳勋志  向云西  吴自荣  国瑞  桂亚可  杨武
作者单位:江西农业大学,南昌,330045江西省林业厅利用外资项目办公室
基金项目:国家自然科学基金项目,亚洲开发银行CCF(气候变化基金)江西赠款项目
摘    要:利用遥感影像构建森林生物量估测模型,能够快速、实时估算区域森林生物量。采用吉水县TM影像以及森林资源调查固定样地数据,构建估算森林地上生物量的多元线性回归模型及BP神经网络模型,并对两种模型进行了比较。结果表明:两种模型对样地生物量的预测值大部分比实测值小,多元线性回归模型预测值与实测值的偏差幅度比BP神经网络模型更大,偏差幅度分别为-110.24~38.09 t·hm-2、-35.12~26.17 t·hm-2;多元线性回归模型与BP神经网络模型的决定系数(R2)分别为0.470和0.869,均方根误差(RMSE)分别为30.52和12.69 t·hm-2,预测精度分别为50.07%和71.65%。因此,运用BP神经网络模型估测森林地上生物量优于多元线性回归模型。

关 键 词:遥感  森林生物量  多元线性回归  神经网络  Remote sensing  Forest biomass  Multiple linear regression  Neural network

Remote Sensing Estimation of Forest Aboveground Biomass Based on Multiple Linear Regression and Neural Net-work Model
Xu Hui,Pan Ping,Ning Jinkui,Zang Hao,Ouyang Xunzhi,Xiang Yunxi,Wu Zirong,Guo Rui,Gui Yake,Yang Wu. Remote Sensing Estimation of Forest Aboveground Biomass Based on Multiple Linear Regression and Neural Net-work Model[J]. Journal of Northeast Forestry University, 2018, 0(1): 63-67
Authors:Xu Hui  Pan Ping  Ning Jinkui  Zang Hao  Ouyang Xunzhi  Xiang Yunxi  Wu Zirong  Guo Rui  Gui Yake  Yang Wu
Abstract:With the TM image and the permanent plot data of forest management inventory in Jishui County, the multiple linear regression and BP neural network model were established to estimate forest aboveground biomass.The most biomass predic-ted values of the two models were smaller than the measured values.However, compared with the BP neural network mod-el, the deviation of regression model between the predicted value and the measured value was greater, and the deviation values were -110.24-38.09 t· hm-2, and-35.12-26.17 t· hm-2, respectively.The R2, root mean square error (RMSE) and prediction accuracy of multiple linear regression model were 0.470, 30.52 t· hm-2 , and 50.07%, and those of BP neural network model were 0.869, 12.69 t · hm-2 , and 71.65%, respectrvely.Therefore, using the BP neural network model to estimate the forest aboveground biomass was better than the multiple linear regression model.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号