首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of fenvalerate on the reproduction and fitness costs of the brown planthopper, Nilaparvata lugens and its resistance mechanism
Authors:Shanfeng Ling  Hong Zhang  Runjie Zhang
Institution:a Bioengineering College, Jingchu University of Technology, Jingmen, Hubei 448000, PR China
b State Key Laboratory for Biocontrol/Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, PR China
Abstract:The brown planthopper (BPH), Nilaparvata lugens Stål, is a primary insect pest of cultivated rice, and its effective control is essential for crop production. However, in recent years, outbreaks of the brown planthopper have occurred more frequently in China. In order to determine the causes and mechanisms of insecticide-induced BPH resurgence and perform population management, we conducted the following studies. By the topical application method, our results showed that, fenvalerate acted as stimulus of fecundity from 3.50 × 10−3 to 2.02 × 10−2 μg/female in the BPH. Apart from 7.00 × 10−3 μg/female, the number of hatched nymphs was increased gradually with an increase in application dose from 3.50 × 10−3 to 1.74 × 10−2 μg/female. After continuous selection with fenvalerate for 11 generations by the rice-stem dipping method, a resistant strain was achieved with medium resistance to fenvalerate (RR 39.22). Life table study indicated that the resistant strain (G4 and G8) showed reproductive advantages, including increased female ratio, copulation rate and fecundity. But the hatchability of resistant strain was lower. The survival rate and emergence rate were significantly lower in G4 and G8 resistant strain. Resistant strains in G4 and G8 showed a fitness advantage (1.04 and 1.11), and the number of offspring in G8 generation was higher than that in G4 generation. The significant difference detected between resistant insects (G4, G5, G8 and G9) and S-strain contains not only the effect of resistant selection but also the effect of continuous rearing itself. Hence it was concluded that the BPH had the potential to develop high resistance against fenvalerate and the induction of the nymphs by sublethal doses of fenvalerate was of importance in the BPH population management, particularly in the predicting. Further studies demonstrated that triphenyl phosphate (TPP) and diethyl maleate (DEM) had no synergism on fenvalerate. However, piperonyl butoxide (PBO) displayed significant synergism in susceptible strain (1.97) and resistant strain (2.73). We concluded that esterase and glutathione S-transferase play little role in fenvalerate detoxification. The increase of the P450-monooxygenases detoxification is an important mechanism for fenvalerate resistance. Because their resistant populations had a fitness advantage, we should pay close attention to the occurrence of BPH and use other functionally different insecticides to control the BPH.
Keywords:Nilaparvata lugens  Fenvalerate  Fitness advantage  Reproduction  Resistance  Resistance mechanism and management
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号