首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of bovine growth hormone and growth hormone-releasing factor on messenger RNA abundance of lipoprotein lipase and stearoyl-CoA desaturase in the bovine mammary gland and adipose tissue
Authors:Beswick N S  Kennelly J J
Institution:Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.
Abstract:Our objective was to determine the influence of bovine growth hormone (bGH) and bovine growth hormone-releasing factor (bGRF) administration on the mRNA abundance of lipoprotein lipase (LpL) and stearoyl-CoA desaturase (SCD). Primiparous Holstein cows received bGH, bGRF, or no treatment from 118 to 181+/-1 d postpartum. We hypothesized that bGH and bGRF treatment would increase the mRNA abundance of both SCD and LpL in the mammary gland with a corresponding reduction in adipose tissue. Milk yield significantly increased but milk fat percentage did not change as a result of bGH or bGRF treatment. Short-, medium-, and long-chain fatty acid concentrations in milk were not affected by either bGH or bGRF treatments, with the exception of a modest, but significant, increase in C16:1 and C18:1 following bGH treatment. Analysis was conducted on the genes encoding LpL (E.C. 3.3.1.34), a key enzyme involved in the uptake of fatty acids into tissues, and SCD (E.C. 1.14.99.5), which is the enzyme responsible for introducing delta9 double bonds in fatty acids of 16 and 18 carbons in length. In adipose tissue, treatment with bGH and bGRF reduced the mRNA abundance of LpL to 14.6 and 25.7% respectively, of that observed for control animals. Similarly, these treatments reduced the SCD mRNA abundance to undetectable levels in adipose tissue. In mammary gland, bGH and bGRF had no significant impact on LpL mRNA abundance. Bovine GH did not significantly affect SCD mRNA abundance in the mammary gland, and bGRF reduced SCD mRNA abundance. From this study to examine the role of bGH and bGRF on the expression of the genes encoding these key lipogenic enzymes in cattle, we conclude that the increased substrate required for enhanced milk fatty acid yield may have been provided through redirection of nutrients to the mammary gland away from adipose tissue and through overall increased metabolism in the mammary gland.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号