首页 | 本学科首页   官方微博 | 高级检索  
     

基于EMD和MLEM2的滚动轴承智能故障诊断方法
引用本文:窦东阳,杨建国,李丽娟,赵英凯. 基于EMD和MLEM2的滚动轴承智能故障诊断方法[J]. 农业工程学报, 2011, 27(4): 125-130. DOI: 10.3969/j.issn.1002-6819.2011.04.021
作者姓名:窦东阳  杨建国  李丽娟  赵英凯
作者单位:1. 中国矿业大学化工学院,徐州,221116
2. 南京工业大学自动化与电气工程学院,南京,210009
基金项目:江苏省自然科学基金(BK2009356);江苏省高校自然科学研究项目(09KJB510003)
摘    要:针对旋转机械的自主故障诊断,提出一种基于EMD和MLEM2的智能解决方法。利用EMD预处理振动信号,在最适合的IMF分量上提取6个时域指标和5个频域指标构成无量纲的轴承故障特征向量。根据设备运行数据形成决策表,使用改进的MLEM2算法挖掘诊断规则,再结合改进的规则匹配策略进行状态识别。EMD能够剥离故障最本质的信息,提高所选分量的信噪比,而MLEM2算法无需对连续属性事先离散化,获得的诊断规则更完备、准确。SKF6203轴承试验表明,该方法诊断精度达到93.75%,相当于能够自主获取知识的专家系统,且只要一次初始设定,无需后续人工干预,是一种有效的智能诊断方法。

关 键 词:轴承,故障诊断,模型,经验模式分解,规则获取,MLEM2算法
收稿时间:2010-06-13
修稿时间:2010-08-31

Intelligent fault diagnosis method for rolling bearings based on EMD and MLEM2
Dou Dongyang,Yang Jianguo,Li Lijuan and Zhao Yingka. Intelligent fault diagnosis method for rolling bearings based on EMD and MLEM2[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(4): 125-130. DOI: 10.3969/j.issn.1002-6819.2011.04.021
Authors:Dou Dongyang  Yang Jianguo  Li Lijuan  Zhao Yingka
Affiliation:Dou Dongyang1,Yang Jianguo1,Li Lijuan2,Zhao Yingkai2 (1. School of Chemical Engineering and Technology,China University of Mining and Technology,Xuchou 221116,China,2. School of Automation and Electrical Engineering,Nanjing University of Technology,Nanjing 210009,China)
Abstract:To solve the problems of automatic fault diagnosis of rotating machinery, an intelligent method based on EMD and MLEM2 was presented. EMD was used to preprocess the original vibration signal, after that, six time-domain characteristic indices and five frequency-domain indices were calculated on the most appropriate IMF to form the dimensionless fault eigenvector of rolling bearings. According to the characteristic vector, fault decision table could be acquired by the data collected from the running machine. The MLEM2 algorithm was then applied to mine diagnostic rules from the data table. By these rules and an improved rule matching strategy, the final fault classification was carried out. EMD could discover the fault essence of the signal, and enhance the signal-to-noise rate of the selected IMF, while MLEM2 algorithm could be operated without attribute discretization, so the result rules were more complete and accurate. It was proved by the experiment of SKF6203 rolling bearings that the accuracy of this method reached 93.75%. It works like an expert system with the ability of acquiring knowledge itself, and does not need any artificial interference once the initialization is made. It is a valid method for intelligent fault diagnosis of rolling bearings.
Keywords:bearings   fault detection   models   EMD   rule induction   MLEM2 algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号