首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器视觉与敲击振动融合的鸭蛋孵化特性检测
引用本文:张伟,屠康,刘鹏,潘磊庆,詹歌. 基于机器视觉与敲击振动融合的鸭蛋孵化特性检测[J]. 农业机械学报, 2012, 43(2): 140-145
作者姓名:张伟  屠康  刘鹏  潘磊庆  詹歌
作者单位:南京农业大学食品科技学院,南京,210095
基金项目:国家高技术研究发展计划(863计划)资助项目(2007AA10Z213)
摘    要:为提高判别种蛋孵化前期受精的准确性和稳定性,将视觉和声学2种传感器信息在孵化第5天进行特征层融合,采用2种人工神经网络构建种蛋孵化前期受精性判断的融合模型。研究表明:采用LVQ神经网络判别模型的准确率和稳定性,优于BP神经网络。单独利用计算机视觉技术和敲击振动技术对鸭蛋孵化早期受精情况的判别准确率为92%和88%,而将2种传感器信息进行融合构建的模型的准确率可达98%,说明传感器信息融合技术在判断鸭蛋孵化前期受精性方面是可行的。

关 键 词:鸭蛋  孵化检测  传感器信息融合  神经网络

Early Fertility Detection of Hatching Duck Egg Based on Fusion between Computer Vision and Impact Excitation
Zhang Wei,Tu Kang,Liu Peng,Pan Leiqing and Zhan Ge. Early Fertility Detection of Hatching Duck Egg Based on Fusion between Computer Vision and Impact Excitation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(2): 140-145
Authors:Zhang Wei  Tu Kang  Liu Peng  Pan Leiqing  Zhan Ge
Affiliation:Nanjing Agricultural University;Nanjing Agricultural University;Nanjing Agricultural University;Nanjing Agricultural University;Nanjing Agricultural University
Abstract:In order to increase the detecting accuracy and stability of the fertility of hatching eggs during early hatching period,information of vision and acoustic sensors were fused in the sensor level on the fifth day of incubation,and two different artificial neural networks were chosen to establish models for detecting fertility of hatching eggs.Results showed that the sensor fusion model by LVQ artificial neural network obtained a higher discriminating accuracy and stability than the sensor fusion model of BP artificial neural network.The discriminating accuracy of hatching eggs during the early hatching period was up to 92% and 88% by computer vision technique and impact excitation technique,respectively.However,the discriminating accuracy reached 98% by sensor fusion model,which implied that the sensor fusion was feasible for detecting fertility of hatching eggs during early hatching period.
Keywords:Duck egg   Fertility detection   Sensor information fusion   Neural networks
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号