首页 | 本学科首页   官方微博 | 高级检索  
     


Characterizing the molecular structure features of newly developed hulless barley cultivars with altered carbohydrate traits (Hordeum vulgare L.) by globar-sourced infrared spectroscopy in relation to nutrient utilization and availability
Authors:Ling Yang  John J. McKinnon  David A. Christensen  Aaron D. Beattie  Peiqiang Yu
Affiliation:1. Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;2. Crop Development Centre, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;3. Tianjin Agricultural University, 22 Jinjin Road, Tianjin 300384, China
Abstract:Four newly developed huless barley cultivars with altered carbohydrate traits were developed at the Crop Development Centre (CDC), University of Saskatchewan which varied for amylose (1–40% DM), and β-glucan (5–10% DM) content. The four hulless barley cultivars include zero-amylose waxy, CDC Fibar; 5%-amylose waxy, CDC Rattan; normal-amylose, CDC McGwire and high-amylose, HB08302. CDC Copeland was also included as a hulled barley control. Our previous study revealed the altered carbohydrate traits in barley affected nutrition availability and rumen degradation kinetics. These biological differences may be caused by differences in their molecular structure features. The objectives of this study were to (1) reveal molecular structure features in the four hulless barley cultivars with altered carbohydrate traits, and (2) quantify the molecular structural features in relation to rumen degradation kinetics, intestinal nutrient digestion and predicted protein supply to dairy cattle. Conventional Molecular Infrared-vibration Spectroscopy was applied to detect biochemical characteristics of functional group bands including protein, non-starch carbohydrate (β-glucan and cellulosic compounds) and total carbohydrate. Spectral data were further analyzed using univariate analysis of recording absorption peak parameters (baseline, region, relative height and area) and also multivariate analysis with agglomerative hierarchical cluster analysis and principal components analysis. Although correlation results showed weak correlation (P < 0.05) between identified functional group bands and ruminal degradation kinetics and estimated protein supply from both models, molecular structure differences of hulless barley cultivars can still be detected by the Molecular Infrared-vibration Spectroscopy technique and potential truly protein supply (MP) was significantly affected (P < 0.05) by protein molecular structure characteristics in hulless barley cultivars.
Keywords:Altered carbohydrate traits   Hulless and hulled barley   Molecular structure   Rumen and intestinal digestion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号