首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rates of in situ carbon mineralization in relation to land-use, microbial community and edaphic characteristics
Authors:Michael S Strickland  Mac A Callaham Jr  Mark A Bradford
Institution:a Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
b USDA, Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA 30602, USA
c Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
d Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
e Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
f School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
Abstract:Plant-derived carbon compounds enter soils in a number of forms; two of the most abundant being leaf litter and rhizodeposition. Our knowledge concerning the predominant controls on the cycling of leaf litter far outweighs that for rhizodeposition even though the constituents of rhizodeposits includes a cocktail of low molecular weight organic compounds which represent a rapidly cycling source of carbon, readily available to soil microbes. We determined the mineralization dynamics of a major rhizodeposit, glucose, and its relationship to land-use, microbial community and edaphic characteristics across a landscape in the southeastern United States. The landscape consists of cultivated, pasture, pine plantation, and hardwood forest sites (n = 3). Mineralization dynamics were resolved in both winter and summer using an in situ13C-glucose pulse-chase approach. Mineralization rates of the labeled glucose decline exponentially across the 72 h measurement periods. This pattern and absolute mineralization rates are consistent across seasons. An information-theoretic approach reveals that land-use is a moderately strong predictor of cumulative glucose mineralization. Measures assessing the size, activity, and/or composition of the microbial community were poor predictors of glucose mineralization. The strongest predictor of glucose mineralization was soil-extractable phosphorus. It was positively related to glucose mineralization across seasons and explained 60% and 48% of variation in cumulative glucose mineralization in the summer and winter, respectively. We discuss potential mechanisms underlying the relationship between soil phosphorus and glucose mineralization. Our results suggest that specific soil characteristics often related to land-use and/or land-management decisions may be strong predictors of glucose mineralization rates across a landscape. We emphasize the need for future research into the role of soil phosphorus availability and land-use history in determining soil organic carbon dynamics.
Keywords:Soil microbial communities  Root exudates  Low molecular weight compounds  Fungal-to-bacterial ratios  Land-use  Rhizosphere  Carbon cycling  Decomposition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号