首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil arthropods beneficially rather than detrimentally impact plant performance in experimental grassland systems of different diversity
Authors:Nico Eisenhauer  Alexander CW Sabais  Stefan Scheu
Institution:a Georg-August-University Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Berliner Str. 28, 37073 Göttingen, Germany
b Darmstadt University of Technology, Institute of Zoology, Schnittspahnstr. 3, 64287 Darmstadt, Germany
Abstract:Impacts of belowground insecticide application on plant performance and changes in plant community structure almost uniformly have been ascribed to reduced belowground herbivory, although recent studies reported distinct side effects on detritivore soil animals, particularly on Collembola. Consequently, it remains controversial if the resulting soil feedbacks on plants are due to alterations in arthropod herbivory or to changes in the activity of detritivores. We investigated the impacts of the application of a commonly used belowground insecticide (chlorpyrifos) on soil animals and soil feedbacks on model plant species representing two main plant functional groups of grassland communities, the grass Lolium perenne and the forb Centaurea jacea.Insecticide application decreased soil insect herbivore densities considerably. However, also Collembola densities and diversity decreased markedly due to insecticide application and this was most pronounced in Entomobryidae, Isotomidae, Hypogastruridae, and Sminthuridae. While densities of other detritivore taxa were not affected or even increased (Oribatida) in insecticide subplots, that of predators mostly decreased.Both model plant species built considerably more biomass in control subplots than in insecticide subplots irrespective of characteristics of the resident plant community. This suggests that soil feedbacks on plants were not due to belowground herbivory and highlights the significance of alternative mechanisms responsible for insecticide-mediated soil feedbacks on plants. The deterioration of model plant species’ performances in insecticide subplots most likely was due to decreased densities of Collembola resulting in the deceleration of nutrient cycling and plant nutrition. The results suggest that it is oversimplistic to only ascribe insecticide-mediated soil feedbacks on plants to belowground herbivores. The results further indicate that in the present study the impact of arthropod detritivores on plant productivity was more important than that of belowground herbivores. This emphasizes that plant-soil arthropod interactions in grassland might be based on both facilitative and antagonistic interrelationships.
Keywords:Antagonistic interactions  Belowground herbivory  Collembola  Chlorpyrifos  Facilitation  Positive interactions  Plant functional group identity  Grassland  The Jena Experiment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号