首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于1D-CNN的土壤全氮近红外光谱预测模型
引用本文:秦文虎,董凯月,邓志超.基于1D-CNN的土壤全氮近红外光谱预测模型[J].土壤,2023,55(6):1347-1353.
作者姓名:秦文虎  董凯月  邓志超
作者单位:东南大学仪器科学与工程学院,东南大学仪器科学与工程学院,东南大学仪器科学与工程学院
基金项目:江苏省重点研发计划项目(BE2019311)
摘    要:摘要:【目的】传统的基于近红外光谱数据预测土壤全氮的方法需要对原始光谱数据做复杂的预处理,筛选出与土壤全氮含量相关性高的敏感波长之后进行模型的回归拟合。本文提出一种一维卷积神经网络(1D-CNN)模型,可以在对数据进行简单预处理甚至无处理的情况下达到非常理想的结果,实现用近红外光谱技术对土壤全氮含量的预测。【方法】于江苏无锡采集410个土壤样品,利用半微量开氏法(NY/T 53-1987)测定土壤的全氮含量,并利用NIR Quest 512光谱仪,在室内环境下对每份土壤样品做光谱检测,并用均值中心化(CT)、标准正态变换(SNV)、趋势校正(DT)对光谱进行预处理,运用偏最小二乘回归(PLS)、BP神经网络、1D-CNN方法建立土壤全氮含量的回归预测模型。每种模型在采用不同预处理方法的数据集上做十折交叉验证,记录预测模型的决定系数(R2)和均方根误差(RMSE)的平均值,并对比三种预处理方法对模型精度的影响。【结果】证明了本文提出的1D-CNN模型基于土壤近红外光谱数据预测土壤全氮含量的可靠性。使用原始数据与经均值中心化、标准正态变换、趋势校正预处理的数据训练得到的1D-CNN模型的决定系数分别为0.907、0.931、0.922、0.964,构建的PLS回归模型决定系数为0.856、0.863、0.861、0.880,训练的BP神经网络的决定系数为0.874、0.907、0.901、0.911。【结论】本文提出的1D-CNN模型在原始数据和经预处理的光谱数据上的表现都优于PLS和BP神经网络,且可以证明,对光谱数据进行预处理能够有效提高1D-CNN模型的性能,尤其是趋势校正对模型的提升效果最明显。研究表明,1D-CNN能更好地提取光谱特征并建立其与含氮量的映射关系,有效地避免过拟合,在未经过预处理的光谱数据上依然能够达到一定的精度。

关 键 词:近红外光谱  全氮含量  光谱预处理  1D-CNN
收稿时间:2023/1/4 0:00:00
修稿时间:2023/3/20 0:00:00

Near-infrared Spectral Prediction Model of Soil Total Nitrogen Based on 1D-CNN
QIN Wenhu,DONG Kaiyue,DENG Zhichao.Near-infrared Spectral Prediction Model of Soil Total Nitrogen Based on 1D-CNN[J].Soils,2023,55(6):1347-1353.
Authors:QIN Wenhu  DONG Kaiyue  DENG Zhichao
Institution:Southeast University School of instrument science and engineering, Nanjing JiangSu,Southeast University School of instrument science and engineering, Nanjing JiangSu,Southeast University School of instrument science and engineering, Nanjing JiangSu
Abstract:A total of 410 soil samples were collected in Wuxi, Jiangsu, China, and total nitrogen contents. and soil sample spectra were analyzed indoors. The spectral data underwent preprocessing, including mean centering, standard normal variate transformation, and trend correction. Regression prediction models for soil total nitrogen content were established using partial least squares (PLS), back propagation (BP) neural networks, and one-dimensional convolutional neural networks (1D-CNN). Each model underwent ten-fold cross-validation using datasets preprocessed with various methods, and the average values of the coefficient of determination (R2) and root mean square error (RMSE) were recorded to compare the impact of these three preprocessing methods on model accuracy. The results demonstrated the reliability of the 1D-CNN model constructed based on soil near-infrared spectral data. The R2 values for the 1D-CNN model trained with raw data and data preprocessed with mean centering, standard normal variate transformation, and trend correction were 0.907, 0.931, 0.922, and 0.964, respectively. In comparison, the R2 values for the PLS model were 0.856, 0.863, 0.861, and 0.880, while the BP neural network model''s R2 values were 0.874, 0.907, 0.901, and 0.911. The 1D-CNN model consistently outperformed the PLS and BP neural network models on both raw and preprocessed spectral data. Preprocessing the spectral data effectively enhanced the 1D-CNN model''s performance, with trend correction demonstrating the most substantial improvement. Hence, 1D-CNN is adept at extracting spectral features and establishing a robust mapping relationship with nitrogen content, effectively preventing overfitting. Even with unprocessed spectral data, it still achieves a commendable level of accuracy.
Keywords:Near infrared spectroscopy  Total nitrogen content  1D-CNN  Spectral pre-processing
点击此处可从《土壤》浏览原始摘要信息
点击此处可从《土壤》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号