首页 | 本学科首页   官方微博 | 高级检索  
     


Assessment of genetic diversity within and among Basmati and non-Basmati rice varieties using AFLP,ISSR and SSR markers
Authors:Navinder?Saini,Neelu?Jain,Sunita?Jain,Rajinder?K.?Jain  author-information"  >  author-information__contact u-icon-before"  >  mailto:rkjain@hau.ernet.in"   title="  rkjain@hau.ernet.in"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Department of Biotechnology and Molecular Biology, CCS Haryana Agricultural University, Hisar, 125004, India;(2) Department of Biochemistry, CCS Haryana Agricultural University, Hisar, 125004, India
Abstract:Molecular markers provide novel tools to differentiate between the various grades of Basmati rice, maintain fair-trade practices and to determine its relationship with other rice groups in Oryza sativa. We have evaluated the genetic diversity and patterns of relationships among the 18 rice genotypes representative of the traditional Basmati, cross-bred Basmati and non-Basmati (indica and japonica) rice varieties using AFLP, ISSR and SSR markers. All the three marker systems generated higher levels of polymorphism and could distinguish between all the 18 rice cultivars. The minimum number of assay-units per system needed to distinguish between all the cultivars was one for AFLP, two for ISSR and five for SSR. A total of 171 (110 polymorphic), 240 (188 polymorphic) and 160 (159 polymorphic) bands were detected using five primer combinations of AFLP, 25 UBC ISSR primers and 30 well distributed, mapped SSR markers, respectively. The salient features of AFLP, ISSR and SSR marker data analyzed using clustering algorithms, principal component analysis, Mantel test and AMOVA analysis are as given below: (i) the two traditional Basmati rice varieties were genetically distinct from indica and japonica rice varieties and invariably formed a separate cluster, (ii) the six Basmati varieties developed from various indica × Basmati rice crosses and backcrosses were grouped variably depending upon the marker system employed; CSR30 and Super being more closer to traditional Basmati followed by HKR228, Kasturi, Pusa Basmati 1 and Sabarmati, (iii) AFLP, ISSR and SSR marker data-sets showed moderate levels of positive correlation (Mantel test, r = 0.42–0.50), and (iv) the partitioning of the variance among and within rice groups (traditional Basmati, cross-bred Basmati, indica and japonica) using AMOVA showed greater variation among than within groups using SSR data-set, while reverse was true for both ISSR and AFLP data-sets. The study emphasizes the need for using a combination of different marker systems for a comprehensive genetic analysis of Basmati rice germplasm. The high-level polymorphism generated by SSR, ISSR and AFLP assays described in this study shall provide novel markers to differentiate between traditional Basmati rice supplies from cheaper cross-bred Basmati and long-grain non-Basmati varieties at commercial level.The first two authors have equal contribution
Keywords:AFLP  Basmati rice  DNA fingerprinting  genetic diversity  ISSR  Oryza sativa  SSR
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号