首页 | 本学科首页   官方微博 | 高级检索  
     

基于电子鼻的果园荔枝成熟阶段监测
引用本文:徐赛, 陆华忠, 周志艳, 吕恩利, 杨径. 基于电子鼻的果园荔枝成熟阶段监测[J]. 农业工程学报, 2015, 31(18): 240-246. DOI: 10.11975/j.issn.1002-6819.2015.18.033
作者姓名:徐赛  陆华忠  周志艳  吕恩利  杨径
作者单位:1.华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642;2.华南农业大学工程学院,广州 510642
基金项目:现代农业产业技术体系建设专项资金(CARS-33-13);广东省高等学校优秀青年教师培养计划(Y92014025);广州市珠江科技新星专项(2014J2200070)
摘    要:为了无损快速监测荔枝成熟阶段,该文提出了一种基于电子鼻技术的果园荔枝成熟阶段监测方法,采用PEN3电子鼻获取挂果约25 d到果实成熟过程中6个成熟阶段荔枝样本的仿生嗅觉信息并同步获取了各成熟阶段荔枝的3项物理特征(果实直径、果实质量与果实可溶性固形物含量)。根据不同成熟阶段荔枝物理特征变化可知,荔枝果实直径与果实质量2项物理指标在挂果约32 d~39 d,以及53 d~60 d增长较快,可溶性固形物含量在挂果约32 d前无法测量,53 d~60 d阶段增长速度较慢。提取各样本电子鼻采样数据75 s时刻的各传感器响应值作为特征值后,采用载荷分析(loadings)进行传感器阵列优化,优选了传感器R2、R4、R6、R7、R8、R9和R10的响应数据进行后续分析。将优化后的传感器响应数据进行归一化处理。采用线性判别分析(linear discriminant analysis,LDA)进一步提取特征信息,降低数据中包含的冗余信息。LDA对荔枝成熟阶段的分类识别效果不佳。为进一步探究电子鼻监测果园荔枝成熟阶段的可行性,采用模糊C均值聚类分析(fuzzy C means clustering,FCM)、k最近邻函数分析(k nearest neighbor,KNN)和概率神经网络(probabilistic neural network,PNN)进行模式识别。研究结果表明,FCM对果园荔枝成熟阶段识别的正确率为89.17%。采用KNN与PNN建立识别模型后,KNN与PNN识别模型对训练集的回判正确率均为100%,对测试集的识别率均为96.67%,具有较好的分类识别效果。试验证明了采用电子鼻进行果园荔枝成熟度监测的可行性,为果园水果品质的实时监测提供参考。

关 键 词:无损检测  水果  模型  电子鼻  成熟阶段  模糊C均值聚类  k最近邻  神经网络
收稿时间:2015-06-23
修稿时间:2015-08-08
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号