首页 | 本学科首页   官方微博 | 高级检索  
     


Dry bean production with various tillage and residue management systems
Authors:Edward J. Deibert
Affiliation:

Soil Science Department, North Dakota State University, Fargo, ND 58105, USA

Abstract:Limited information is available on the influence of high surface residue tillag systems and the interaction of weed control methods, cultivar maturity, and phosphorus fertilizer placement on yield parameters of dry bean (Phaseolus vulgaris L.) A 3-year field study was conducted on a Fargo clay (fine, frigid, montmorillonitic Vertic Haplaquoll) to evaluate the influence of surface or deep band placed phosphorus fertilizer, tillage systems (PLOW, SWEEP, STRIP, NOTILL) and weed control methods on harvest plant populations, seed yield and seed weight of ‘Upland’ (early maturity) and ‘C-20’ (late maturity) dry bean cultivars. Yield variables were influenced by cultivar planted and climatic conditions. Zinc deficient plants and decreased yield were observed with the ‘C-20’ cultivar when grown on PLOW system plots where phosphorus fertilizer was surface applied. Zinc deficient plants were not present when the phosphorus fertilizer was deep banded or none was applied. No zinc deficient plants were observed on NOTILL, STRIP and SWEEP system plots. Both cultivars matured 7 to 10 days earlier with NOTILL, STRIP and SWEEP systems when compared with the PLOW system. Dry bean yields were reduced 180 to 310 kg ha−1 by cultivation for weed control. Little difference in yields occurred among tillage systems when climatic conditions were normal. During a cool wet season, seed yields on PLOW system plots were 150 to 400 kg ha−1 higher than on plots of systems with surface residue. Seed weight, although lower on the late maturity cultivar, was not greatly changed by tillage or weed control method. Results from this study indicate that dry beans can be successfully grown with small grain surface residue systems in northern climatic areas where growing degree days exceed 1200 and growing season precipitation does not exceed 400 mm. Further, deep band placement of phosphorus fertilizer is essential in dry bean rotations to eliminate potential zinc deficiency on soils low in zinc. Switching to a high residue management system may require a special cultivator design to eliminate yield loss due to pruning of shallow roots present with high surface residue.
Keywords:Author Keywords: Dry bean   Tillage   Residue   Fertilizer placement   Weed control
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号